METHODS OF STATISTICAL PHYSICS

TOMOYASU TANAKA

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface

Acknowledgements

1 The laws of thermodynamics
 1.1 The thermodynamic system and processes 1
 1.2 The zeroth law of thermodynamics 1
 1.3 The thermal equation of state 2
 1.4 The classical ideal gas 4
 1.5 The quasistatic and reversible processes 7
 1.6 The first law of thermodynamics 7
 1.7 The heat capacity 8
 1.8 The isothermal and adiabatic processes 10
 1.9 The enthalpy 12
 1.10 The second law of thermodynamics 12
 1.11 The Carnot cycle 14
 1.12 The thermodynamic temperature 15
 1.13 The Carnot cycle of an ideal gas 19
 1.14 The Clausius inequality 22
 1.15 The entropy 24
 1.16 General integrating factors 26
 1.17 The integrating factor and cyclic processes 28
 1.18 Hausen’s cycle 30
 1.19 Employment of the second law of thermodynamics 31
 1.20 The universal integrating factor 32
 Exercises 34

2 Thermodynamic relations 38
 2.1 Thermodynamic potentials 38
 2.2 Maxwell relations 41
Contents

2.3 The open system 42
2.4 The Clausius–Clapeyron equation 44
2.5 The van der Waals equation 46
2.6 The grand potential 48
 Exercises 48

3 The ensemble theory 50
 3.1 Microstate and macrostate 50
 3.2 Assumption of equal a priori probabilities 52
 3.3 The number of microstates 52
 3.4 The most probable distribution 53
 3.5 The Gibbs paradox 55
 3.6 Resolution of the Gibbs paradox: quantum ideal gases 56
 3.7 Canonical ensemble 58
 3.8 Thermodynamic relations 61
 3.9 Open systems 63
 3.10 The grand canonical distribution 63
 3.11 The grand partition function 64
 3.12 The ideal quantum gases 66
 Exercises 67

4 System Hamiltonians 69
 4.1 Representations of the state vectors 69
 4.2 The unitary transformation 76
 4.3 Representations of operators 77
 4.4 Number representation for the harmonic oscillator 78
 4.5 Coupled oscillators: the linear chain 82
 4.6 The second quantization for bosons 84
 4.7 The system of interacting fermions 88
 4.8 Some examples exhibiting the effect of Fermi–Dirac statistics 91
 4.9 The Heisenberg exchange Hamiltonian 94
 4.10 The electron–phonon interaction in a metal 95
 4.11 The dilute Bose gas 99
 4.12 The spin-wave Hamiltonian 101
 Exercises 105

5 The density matrix 106
 5.1 The canonical partition function 106
 5.2 The trace invariance 107
 5.3 The perturbation expansion 108
 5.4 Reduced density matrices 110
 5.5 One-site and two-site density matrices 111
Contents

5.6 The four-site reduced density matrix 114
5.7 The probability distribution functions for the Ising model 121
 Exercises 125

6 The cluster variation method 127
 6.1 The variational principle 127
 6.2 The cumulant expansion 128
 6.3 The cluster variation method 130
 6.4 The mean-field approximation 131
 6.5 The Bethe approximation 134
 6.6 Four-site approximation 137
 6.7 Simplified cluster variation methods 141
 6.8 Correlation function formulation 144
 6.9 The point and pair approximations in the CFF 145
 6.10 The tetrahedron approximation in the CFF 147
 Exercises 152

7 Infinite-series representations of correlation functions 153
 7.1 Singularity of the correlation functions 153
 7.2 The classical values of the critical exponent 154
 7.3 An infinite-series representation of the partition function 156
 7.4 The method of Padé approximants 158
 7.5 Infinite-series solutions of the cluster variation method 161
 7.6 High temperature specific heat 165
 7.7 High temperature susceptibility 167
 7.8 Low temperature specific heat 169
 7.9 Infinite series for other correlation functions 172
 Exercises 173

8 The extended mean-field approximation 175
 8.1 The Wentzel criterion 175
 8.2 The BCS Hamiltonian 178
 8.3 The s–d interaction 184
 8.4 The ground state of the Anderson model 190
 8.5 The Hubbard model 197
 8.6 The first-order transition in cubic ice 203
 Exercises 209

9 The exact Ising lattice identities 212
 9.1 The basic generating equations 212
 9.2 Linear identities for odd-number correlations 213
 9.3 Star-triangle-type relationships 216
 9.4 Exact solution on the triangular lattice 218
Contents

9.5 Identities for diamond and simple cubic lattices 221
9.6 Systematic naming of correlation functions on the lattice 221
 Exercises 227

10 Propagation of short range order 230
 10.1 The radial distribution function 230
 10.2 Lattice structure of the superionic conductor αAgI 232
 10.3 The mean-field approximation 234
 10.4 The pair approximation 235
 10.5 Higher order correlation functions 237
 10.6 Oscillatory behavior of the radial distribution function 240
 10.7 Summary 244

11 Phase transition of the two-dimensional Ising model 246
 11.1 The high temperature series expansion of the partition function 246
 11.2 The Pfaffian for the Ising partition function 248
 11.3 Exact partition function 253
 11.4 Critical exponents 259
 Exercises 260

Appendix 1 The gamma function 261
Appendix 2 The critical exponent in the tetrahedron approximation 265
Appendix 3 Programming organization of the cluster variation method 269
Appendix 4 A unitary transformation applied to the Hubbard Hamiltonian 278
Appendix 5 Exact Ising identities on the diamond lattice 281
References 285
Bibliography 289
Index 291
1

The laws of thermodynamics

1.1 The thermodynamic system and processes

A physical system containing a large number of atoms or molecules is called the thermodynamic system if macroscopic properties, such as the temperature, pressure, mass density, heat capacity, etc., are the properties of main interest. The number of atoms or molecules contained, and hence the volume of the system, must be sufficiently large so that the conditions on the surfaces of the system do not affect the macroscopic properties significantly. From the theoretical point of view, the size of the system must be infinitely large, and the mathematical limit in which the volume, and proportionately the number of atoms or molecules, of the system are taken to infinity is often called the thermodynamic limit.

The thermodynamic process is a process in which some of the macroscopic properties of the system change in the course of time, such as the flow of matter or heat and/or the change in the volume of the system. It is stated that the system is in thermal equilibrium if there is no thermodynamic process going on in the system, even though there would always be microscopic molecular motions taking place. The system in thermal equilibrium must be uniform in density, temperature, and other macroscopic properties.

1.2 The zeroth law of thermodynamics

If two thermodynamic systems, A and B, each of which is in thermal equilibrium independently, are brought into thermal contact, one of two things will take place: either (1) a flow of heat from one system to the other or (2) no thermodynamic process will result. In the latter case the two systems are said to be in thermal equilibrium with respect to each other.
The laws of thermodynamics

The zeroth law of thermodynamics If two systems are in thermal equilibrium with each other, there is a physical property which is common to the two systems. This common property is called the temperature.

Let the condition of thermodynamic equilibrium between two physical systems A and B be symbolically represented by

$$A \Leftrightarrow B. \quad (1.1)$$

Then, experimental observations confirm the statement

$$\text{if } A \Leftrightarrow C \text{ and } B \Leftrightarrow C, \text{ then } A \Leftrightarrow B. \quad (1.2)$$

Based on preceding observations, some of the physical properties of the system C can be used as a measure of the temperature, such as the volume of a fixed amount of the chemical element mercury under some standard atmospheric pressure. The zeroth law of thermodynamics is the assurance of the existence of a property called the temperature.

1.3 The thermal equation of state

Let us consider a situation in which two systems A and B are in thermal equilibrium. In particular, we identify A as the thermometer and B as a system which is homogeneous and isotropic. In order to maintain equilibrium between the two, the volume V of B does not have to have a fixed value. The volume can be changed by altering the hydrostatic pressure p of B, yet maintaining the equilibrium condition in thermal contact with the system A. This situation may be expressed by the following equality:

$$f_B(p, V) = \theta_A, \quad (1.3)$$

where θ_A is an empirical temperature determined by the thermometer A.

The thermometer A itself does not have to be homogeneous and isotropic; however, let A also be such a system. Then,

$$f_B(p, V) = f_A(p_A, V_A). \quad (1.4)$$

For the sake of simplicity, let p_A be a constant. Usually p_A is chosen to be one atmospheric pressure. Then f_A becomes a function only of the volume V. Let us take this function to be

$$f_A(p_A, V_A) = 100 \left[\frac{V_A - V_0}{V_{100} - V_0} \right]_A, \quad (1.5)$$

where V_0 and V_{100} are the volumes of A at the freezing and boiling temperatures.
1.3 The thermal equation of state

of water, respectively, under one atmospheric pressure. This means

\[
\theta = 100 \frac{V_A - V_0}{V_{100} - V_0}.
\]
(1.6)

If \(B \) is an arbitrary substance, (1.3) may be written as

\[
f(p, V) = \theta.\]

(1.7)

In the above, the volume of the system \(A \) is used as the thermometer; however, the pressure \(p \) could have been used instead of the volume. In this case the volume of system \(A \) must be kept constant. Other choices for the thermometer include the resistivity of a metal. The temperature \(\theta \) introduced in this way is still an empirical temperature. An equation of the form (1.7) describes the relationship between the pressure, volume, and temperature \(\theta \) and is called the thermal equation of state. In order to determine the functional form of \(f(p, V) \), some elaborate measurements are needed. To find a relationship between small changes in \(p, V \) and \(\theta \), however, is somewhat easier. When (1.7) is solved for \(p \), we can write

\[
p = p(\theta, V).
\]
(1.8)

Differentiating this equation, we find

\[
dp = \left(\frac{\partial p}{\partial \theta} \right)_V d\theta + \left(\frac{\partial p}{\partial V} \right)_\theta dV.
\]
(1.9)

If the pressure \(p \) is kept constant, i.e., \(dp = 0 \), the so-called isobaric process,

\[
\left(\frac{\partial p}{\partial \theta} \right)_V d\theta + \left(\frac{\partial p}{\partial V} \right)_\theta dV = 0.
\]
(1.10)

In this relation, one of the two changes, either \(d\theta \) or \(dV \), can have an arbitrary value; however, the ratio \(dV/d\theta \) is determined under the condition \(dp = 0 \). Hence the notation \((\partial V/\partial \theta)_p \) is appropriate. Then,

\[
\left(\frac{\partial p}{\partial \theta} \right)_V + \left(\frac{\partial p}{\partial V} \right)_\theta \left(\frac{\partial V}{\partial \theta} \right)_p = 0.
\]
(1.11)

\((\partial p/\partial \theta)_V \) is the rate of change of \(p \) with \(\theta \) under the condition of constant volume, the so-called isochoric process. Since \(V \) is kept constant, \(p \) is a function only of \(\theta \). Therefore

\[
\left(\frac{\partial p}{\partial \theta} \right)_V = \frac{1}{\left(\frac{\partial \theta}{\partial p} \right)_V}.
\]
(1.12)
Hence (1.11) is rewritten as
\[
\left(\frac{\partial p}{\partial V} \right)_\theta \left(\frac{\partial V}{\partial \theta} \right)_p \left(\frac{\partial \theta}{\partial p} \right)_V = -1.
\] (1.13)

This form of equation appears very often in the formulation of thermodynamics. In general, if a relation \(f(x, y, z) = 0 \) exists, then the following relations hold:
\[
\left(\frac{\partial x}{\partial y} \right)_z = \frac{1}{\left(\frac{\partial y}{\partial x} \right)_z}, \quad \left(\frac{\partial x}{\partial z} \right)_y \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = -1.
\] (1.14)

The quantity
\[
\beta = \frac{1}{V} \left(\frac{\partial V}{\partial \theta} \right)_p
\] (1.15)
is called the volume expansivity. In general, \(\beta \) is almost constant over some range of temperature as long as the range is not large. Another quantity
\[
K = -V \left(\frac{\partial p}{\partial V} \right)_\theta
\] (1.16)
is called the isothermal bulk modulus. The reciprocal of this quantity,
\[
\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_\theta,
\] (1.17)
is called the isothermal compressibility. Equation (1.9) is expressed in terms of these quantities as
\[
dp = \beta K \theta d\theta - \frac{K}{V} dV.
\] (1.18)

1.4 The classical ideal gas

According to laboratory experiments, many gases have the common feature that the pressure, \(p \), is inversely proportional to the volume, \(V \); i.e., the product \(pV \) is constant when the temperature of the gas is kept constant. This property is called the Boyle–Marriot law,
\[
pV = F(\theta),
\] (1.19)

where \(F(\theta) \) is a function only of the temperature \(\theta \). Many real gases, such as oxygen, nitrogen, hydrogen, argon, and neon, show small deviations from this behavior; however, the law is obeyed increasingly more closely as the density of the gas is lowered.
1.4 The classical ideal gas

Thermodynamics is a branch of physics in which thermal properties of physical systems are studied from a macroscopic point of view. The formulation of the theories does not rely upon the existence of a system which has idealized properties. It is, nevertheless, convenient to utilize an idealized system for the sake of theoretical formulation. The classical ideal gas is an example of such a system.

Definition The ideal gas obeys the Boyle–Marriot law at any density and temperature.

Let us now construct a thermometer by using the ideal gas. For this purpose, we take a fixed amount of the gas and measure the volume change due to a change of temperature, \(\theta_p \), while the pressure of the gas is kept constant. So,

\[
\theta_p = 100 \frac{V - V_0}{V_{100} - V_0}, \tag{1.20}
\]

where \(V_0 \) and \(V_{100} \) are the volumes of the gas at the freezing and boiling temperatures, respectively, of water under the standard pressure. This scale is called the constant-pressure gas thermometer.

It is also possible to define a temperature scale by measuring the pressure of the gas while the volume of the gas is kept constant. This temperature scale is defined by

\[
\theta_v = 100 \frac{p - p_0}{p_{100} - p_0}, \tag{1.21}
\]

where \(p_0 \) and \(p_{100} \) are the pressures of the gas at the freezing and boiling temperatures, respectively, of water under the standard pressure. This scale is called the constant-volume gas thermometer.

These two temperature scales have the same values at the two fixed points of water by definition; however, they also have the same values in between the two fixed temperature points.

From (1.20) and (1.21),

\[
\theta_p = 100 \frac{pV - pV_0}{pV_{100} - pV_0}, \quad \theta_v = 100 \frac{pV - p_0 V}{p_{100} V - p_0 V}, \tag{1.22}
\]

and, since \(pV_0 = p_0 V \) and \(pV_{100} = p_{100} V \),

\[
\theta_p = \theta_v, \tag{1.23}
\]

and hence we may set \(\theta_p = \theta_v = \theta \) and simply define

\[
pV_0 = p_0 V = (pV)_0, \quad pV_{100} = p_{100} V = (pV)_{100}, \tag{1.24}
\]
and

\[\theta = 100 \frac{pV - (pV)_0}{(pV)_{100} - (pV)_0}. \]

(1.25)

When this equation is solved for \(pV\), we find that

\[pV = \frac{(pV)_{100} - (pV)_0}{100} \left[\theta + \frac{100(pV)_0}{(pV)_{100} - (pV)_0} \right]. \]

(1.26)

If we define

\[\frac{(pV)_{100} - (pV)_0}{100} = R', \]

\[\theta + \frac{100(pV)_0}{(pV)_{100} - (pV)_0} = \Theta, \]

(1.27)

(1.26) can then be written in the following form:

\[pV = R' \Theta. \]

(1.28)

\(\Theta\) is called the ideal gas temperature. It will be shown later in this chapter that this temperature becomes identical with the thermodynamic temperature scale.

The difference between \(\theta\) and \(\Theta\) is given by

\[\Theta_0 = 100 \frac{(pV)_0}{(pV)_{100} - (pV)_0}. \]

(1.29)

According to laboratory experiments, the value of this quantity depends only weakly upon the type of gas, whether oxygen, nitrogen, or hydrogen, and in particular it approaches a common value, \(\Theta_0\), in the limit as the density of the gas becomes very small:

\[\Theta_0 = 273.15. \]

(1.30)

We can calculate the volume expansivity \(\beta\) for the ideal gas at the freezing point of water \(\theta = 0\):

\[\beta = \frac{1}{V_0} \left(\frac{\partial V}{\partial \Theta} \right)_p = \frac{1}{V_0} \frac{R'}{p} = \frac{R'}{\Theta_0} = \frac{1}{\Theta_0}. \]

(1.31)

When the value \(\Theta_0 = 273.15\) is introduced, we find

\[\beta = 0.0036610. \]

(1.32)

This value may be favorably compared with experimental measurements.
1.5 The quasistatic and reversible processes

The *quasistatic process* is defined as a thermodynamic process which takes place unlimitedly slowly. In the theoretical formulation of thermodynamics it is customary to consider a sample of gas contained in a cylinder with a frictionless piston. The walls of the cylinder are made up of a diathermal, i.e., a perfectly heat conducting metal, and the cylinder is immersed in a heat bath at some temperature. In order to cause any heat transfer between the heat bath and the gas in the cylinder there must be a temperature difference; and similarly there must be a pressure difference between the gas inside the cylinder and the applied pressure to the piston in order to cause any motion of the piston in and out of the cylinder. We may consider an ideal situation in which the temperature difference and the pressure difference are adjusted to be infinitesimally small and the motion of the piston is controlled to be unlimitedly slow. In this ideal situation any change or process of heat transfer along with any mechanical work upon the gas by the piston can be regarded as reversible, i.e., the direction of the process can be changed in either direction, by compression or expansion. Any gadgets which might be employed during the course of the process are assumed to be brought back to the original condition at the end of the process. Any process designed in this way is called a quasistatic process or a *reversible process* in which the system maintains an equilibrium condition at any stage of the process.

In this way the thermodynamic system, a sample of gas in this case, can make some finite change from an initial state P_1 to a final state P_2 by a succession of quasistatic processes. In the following we often state that a thermodynamic system undergoes a finite change from the initial state P_1 to the final state P_2 by reversible processes.

1.6 The first law of thermodynamics

Let us consider a situation in which a macroscopic system has changed state from one equilibrium state P_1 to another equilibrium state P_2, after undergoing a succession of reversible processes. Here the processes mean that a quantity of heat energy Q has cumulatively been absorbed by the system and an amount of mechanical work W has cumulatively been performed upon the system during these changes.

The first law of thermodynamics *There would be many different ways or routes to bring the system from state P_1 to the state P_2; however, it turns out that the sum*

$$W + Q$$

(1.33)
is independent of the ways or the routes as long as the two states P_1 and P_2 are fixed, even though the quantities W and Q may vary individually depending upon the different routes.

This is the fact which has been experimentally confirmed and constitutes the first law of thermodynamics. In (1.33) the quantities W and Q must be measured in the same units.

Consider, now, the case in which P_1 and P_2 are very close to each other and both W and Q are very small. Let these values be $d'W$ and $d'Q$. According to the first law of thermodynamics, the sum, $d'W + d'Q$, is independent of the path and depends only on the initial and final states, and hence is expressed as the difference of the values of a quantity called the internal energy, denoted by U, determined by the physical, or thermodynamic, state of the system, i.e.,

$$dU = U_2 - U_1 = d'W + d'Q.$$ \hfill (1.34)

Mathematically speaking, $d'W$ and $d'Q$ are not exact differentials of state functions since both $d'W$ and $d'Q$ depend upon the path; however, the sum, $d'W + d'Q$, is an exact differential of the state function U. This is the reason for using primes on those quantities. More discussions on the exact differential follow later in this chapter.

1.7 The heat capacity

We will consider one of the thermodynamical properties of a physical system, the heat capacity. The heat capacity is defined as the amount of heat which must be given to the system in order to raise its temperature by one degree. The specific heat is the heat capacity per unit mass or per mole of the substance.

From the first law of thermodynamics, the amount of heat $d'Q$ is given by

$$d'Q = dU - d'W = dU + pdV, \quad d'W = -pdV.$$ \hfill (1.35)

These equations are not yet sufficient to find the heat capacity, unless dU and dV are given in terms of $d\Theta$, the change in ideal gas temperature. In order to find these relations, it should be noted that the thermodynamic state of a single-phase system is defined only when two variables are fixed. The relationship between U and Θ is provided by the caloric equation of state

$$U = U(\Theta, V),$$ \hfill (1.36)

and there is a thermal equation of state determining the relationship between p, V, and Θ:

$$p = p(\Theta, V).$$ \hfill (1.37)
In the above relations, we have chosen Θ and V as the independent variables to specify the thermodynamic state of the system. We could have equally chosen other sets, such as (Θ, p) or (p, V). Which of the sets is chosen depends upon the situation, and discussions of the most convenient set will be given in Chapter 2.

Let us choose the set (Θ, V) for the moment; then, one finds that

$$dU = \left(\frac{\partial U}{\partial \Theta}\right)_V d\Theta + \left(\frac{\partial U}{\partial V}\right)_{\Theta} dV,$$

$$d'Q = \left(\frac{\partial U}{\partial \Theta}\right)_V d\Theta + \left[\left(\frac{\partial U}{\partial V}\right)_{\Theta} + p\right] dV,$$

(1.38)

(1.39)

and the heat capacity, C, is given by

$$C = \left(\frac{\partial U}{\partial \Theta}\right)_V + \left[\left(\frac{\partial U}{\partial V}\right)_{\Theta} + p\right] \left(\frac{dV}{d\Theta}\right)_{\text{process}}.$$

(1.40)

The notation $(dV/d\Theta)_{\text{process}}$ means that the quantity is not just a function only of Θ, and the process must be specified.

The heat capacity at constant volume (isochoric), C_V, is found by setting $dV = 0$, i.e.,

$$C_V = \left(\frac{\partial U}{\partial \Theta}\right)_V.$$

(1.41)

The heat capacity for an arbitrary process is expressed as

$$C = C_V + \left[\left(\frac{\partial U}{\partial V}\right)_{\Theta} + p\right] \left(\frac{dV}{d\Theta}\right)_{\text{process}}.$$

(1.42)

The heat capacity at constant pressure (isobaric), C_p, is given by

$$C_p = C_V + \left[\left(\frac{\partial U}{\partial V}\right)_{\Theta} + p\right] \left(\frac{\partial V}{\partial \Theta}\right)_p,$$

(1.43)

where $(\partial V/\partial \Theta)_p$ is found from the thermal equation of state, and $(\partial U/\partial V)_{\Theta}$ is from the caloric equation of state. This quantity may be rewritten as

$$\left(\frac{\partial U}{\partial V}\right)_{\Theta} = \frac{C_p - C_V}{\left(\frac{\partial V}{\partial \Theta}\right)_p} - p.$$

(1.44)

The denominator is expressed in terms of the volume expansivity, β, i.e.,

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial \Theta}\right)_p.$$

(1.45)
and then

\[\left(\frac{\partial U}{\partial V} \right)_{\Theta} = \frac{C_p - C_V}{\beta V} - p. \]

(1.46)

This equation expresses the volume dependence of the internal energy in terms of \(C_p, C_V, \) and \(\beta. \)

For many real gases, if the experimentally measured values of \(C_p, C_V, \) and \(\beta \) are introduced into the above equation, the right hand side becomes vanishingly small, especially if the state of the gas is sufficiently removed from the saturation point; an experimental fact which led to the definition of a classical ideal gas.

Definition The thermal and caloric equations of state for the classical ideal gas are defined, respectively, by

\[p = p(\Theta, V) = \frac{nR\Theta}{V}, \quad U = U(\Theta), \]

(1.47)

where \(n \) is the quantity of the gas measured in the number of moles of the gas and \(R \) is a constant.

It is worthwhile noting the fact that the definition of a mole can be given within the framework of thermodynamics, i.e., the amount of the gas is adjusted in such a way that the quantity \(pV/\Theta \) becomes equal for all gases. Thermodynamics is a macroscopic physics, and hence the formulation of thermodynamics can be developed without taking any atomic structure of the working system into consideration.

One important property of the classical ideal gas follows immediately from the above definition of the equations of state and (1.46):

\[\left(\frac{\partial U}{\partial V} \right)_{\Theta} = 0, \quad C_p = C_V + \beta pV = C_V + nR. \]

(1.48)

1.8 The isothermal and adiabatic processes

Let us now discuss some other properties of the ideal gas. There are two commonly employed processes in the formulation of thermodynamics.

One is the isothermal process. In this process, the physical system, such as an ideal gas, is brought into thermal contact with a heat reservoir of temperature \(\Theta, \) and all the processes are performed at constant temperature. For an ideal gas,

\[pV = \text{constant}, \quad d\Theta = 0. \]

(1.49)

The lines drawn in the \(p - V \) plane are called the isotherms.
The other process is the *adiabatic* process. In this process, the physical system is isolated from any heat reservoir, and hence there is no heat transfer in and out of the system. A passage, or line, in the $p - V$ plane in an adiabatic process will now be found.

From (1.39), for an adiabatic process

$$\left(\frac{\partial U}{\partial \Theta} \right)_V = C_V, \quad \left(\frac{\partial U}{\partial V} \right)_\Theta = 0, \quad C_V d\Theta + p dV = 0,$$

which yields a differential equation

$$\frac{dV}{V} + \frac{C_V d\Theta}{nR \Theta} = 0,$$

with the solution

$$V \Theta^{\frac{C_V}{nR}} = \text{constant}. \quad (1.52)$$

If this is combined with $\Theta = pV/nR$, we find

$$p^{\frac{C_V}{nR}} V^{\frac{\gamma k C_V}{nR}} = \text{constant},$$

which yields

$$p V^\gamma = \text{constant}, \quad (1.54)$$

where $\gamma = C_p/C_V$.

Fig. 1.1.
1.9 The enthalpy

Let us go back to the first law of thermodynamics,
\[d'Q = dU + pdV, \quad (1.55) \]
and construct an equation in which the temperature \(\Theta \) and pressure \(p \) are used as independent variables. In order to accomplish this, both \(dU \) and \(dV \) must be expressed in terms of \(d\Theta \) and \(dp \), i.e.,
\[
dU = \left(\frac{\partial U}{\partial \Theta} \right)_p d\Theta + \left(\frac{\partial U}{\partial p} \right)_\Theta dp, \\
dV = \left(\frac{\partial V}{\partial \Theta} \right)_p d\Theta + \left(\frac{\partial V}{\partial p} \right)_\Theta dp. \quad (1.56)\]

Then,
\[
d'Q = \left[\left(\frac{\partial U}{\partial \Theta} \right)_p + p \left(\frac{\partial V}{\partial \Theta} \right)_p \right] d\Theta + \left[\left(\frac{\partial U}{\partial p} \right)_\Theta + p \left(\frac{\partial V}{\partial p} \right)_\Theta \right] dp. \quad (1.57)\]

This suggests that the quantity \(H \), called the enthalpy and defined by
\[H = U + pV, \quad (1.58) \]
is a convenient quantity when \(\Theta \) and \(p \) are used as the independent variables:
\[
d'Q = \left(\frac{\partial H}{\partial \Theta} \right)_p d\Theta + \left[\left(\frac{\partial H}{\partial p} \right)_\Theta - V \right] dp. \quad (1.59)\]

The heat capacity at constant pressure (isobaric), \(C_p \), is found by setting \(dp = 0 \), i.e.,
\[C_p = \left(\frac{\partial H}{\partial \Theta} \right)_p. \quad (1.60) \]
The heat capacity for an arbitrary process is expressed as
\[C = C_p + \left[\left(\frac{\partial H}{\partial p} \right)_\Theta - V \right] \left(\frac{dp}{d\Theta} \right)_\text{process}. \quad (1.61) \]

1.10 The second law of thermodynamics

Let us examine closely the reversibility characteristics of the processes which take place in nature. There are three forms of statement concerning the reversibility vs. irreversibility argument. (Note that the terminologies cyclic engine and cyclic process are used. The cyclic engine is a physical system which performs a succession
of processes and goes back to the state from which it started at the end of the processes. The physical conditions of the surroundings are assumed also to go back to the original state.)

The second law of thermodynamics is stated in the following three different forms.

Clausius’s statement It is impossible to operate a cyclic engine in such a way that it receives a quantity of heat from a body at a lower temperature and gives off the same quantity of heat to a body at a higher temperature without leaving any change in any physical system involved.

Thomson’s statement† It is impossible to operate a cyclic engine in such a way that it converts heat energy from one heat bath completely into a mechanical work without leaving any change in any physical system involved.

Ostwald’s statement It is impossible to construct a perpetual machine of the second kind.

The perpetual machine of the second kind is a machine which negates Thomson’s statement. For this reason, Ostwald’s statement is equivalent to Thomson’s statement.

If one of the statements mentioned above is accepted to be true, then other statements are proven to be true. All the above statements are, therefore, equivalent to one another.

In order to gain some idea as to what is meant by the proof of a theorem in the discussion of the second law of thermodynamics, the following theorem and its proof are instructive.

Theorem 1.1 A cyclic process during which a quantity of heat is received from a high temperature body and the same quantity of heat is given off to a low temperature body is an irreversible process.

Proof If this cyclic process is reversible it would then be possible to take away a quantity of heat from a body at a lower temperature and give off the same quantity of heat to a body at a higher temperature without leaving any changes in the surroundings. This reverse cycle would then violate Clausius’s statement. For this reason, if the Clausius statement is true, then the statement of this theorem is also true.

† William Thomson, later Lord Kelvin, developed the second law of thermodynamics in 1850.
It will be left to the Exercises to prove that the following statements are all true if one of the preceding statements is accepted to be true:

generation of heat by friction is an irreversible process;
free expansion of an ideal gas into a vacuum is an irreversible process;
a phenomenon of flow of heat by heat conduction is an irreversible process.

The motion of a pendulum is usually treated as a reversible phenomenon in classical mechanics; however, if one takes into account the frictional effect of the air, then the motion of the pendulum must be treated as an irreversible process. Similarly, the motion of the Moon around the Earth is irreversible because of the tidal motion on the Earth. Furthermore, if any thermodynamic process, such as the flow of heat by thermal conduction or the free expansion of a gas into a vacuum, is involved, all the natural phenomena must be regarded as irreversible processes.

Another implication of the second law of thermodynamics is that the direction of the irreversible flow of heat can be used in defining the direction of the temperature scale. If two thermodynamic systems are not in thermal equilibrium, then a flow of heat takes place from the body at a higher temperature to the body at a lower temperature.

1.11 The Carnot cycle

The Carnot cycle is defined as a cyclic process which is operated under the following conditions.

Definition *The Carnot cycle is an engine capable of performing a reversible cycle which is operated between two heat reservoirs of empirical temperatures* θ_2 *(higher)* *and* θ_1 *(lower).*

The heat reservoir or heat bath is interpreted as having an infinitely large heat capacity and hence its temperature does not change even though there is heat transfer into or out of the heat bath. The terminologies heat reservoir (R) and heat bath may be used interchangeably in the text.

The Carnot cycle, C, receives a positive quantity of heat from the higher temperature reservoir and gives off a positive quantity of heat to the lower temperature reservoir. Since this is a reversible cycle, it is possible to operate the cycle in the reverse direction. Such a cycle is called the reverse Carnot cycle, \bar{C}. \bar{C} undergoes a cyclic process during which it receives a positive quantity of heat from a lower temperature reservoir and gives off a positive amount of heat to the reservoir at a higher temperature.
Theorem 1.2 The Carnot cycle, C, performs positive work on the outside body while the reverse Carnot cycle, \bar{C}, receives positive work from the outside body.

Proof Let us consider a reverse Carnot cycle \bar{C}. This cycle, by definition, takes up a quantity of heat from the lower temperature heat reservoir and gives off a positive quantity of heat to the higher temperature heat reservoir. If, contrary to the assumption, the outside work is zero, the cycle would violate the Clausius statement. The quantity of work from the outside body cannot be negative, because this would mean that the cyclic engine could do positive work on the outside body, which could be converted into heat in the higher temperature heat bath. The net result is that the reverse cycle would have taken up a quantity of heat and transferred it to the higher temperature reservoir. This would violate the Clausius statement. For this reason the reverse Carnot cycle must receive a positive quantity of work from an outside body.

Next, let us consider a normal Carnot cycle working between two heat reservoirs. The amount of work performed on the outside body must be positive, because, if it were negative, the cycle would violate the Clausius statement by operating it in the reverse direction.

1.12 The thermodynamic temperature

In this section the thermodynamic temperature will be defined. To accomplish this we introduce an empirical temperature scale, which may be convenient for practical purposes, e.g., a mercury column thermometer scale. The only essential feature of the empirical temperature is that the scale is consistent with the idea of an irreversible heat conduction, i.e., the direction of the scale is defined in such a way
The laws of thermodynamics

that a quantity of heat can flow irreversibly from a body at a higher temperature to a body at a lower temperature. Let us prepare two heat baths of temperatures θ_1 and θ_2, $\theta_1 < \theta_2$, and suppose that two Carnot cycles, C and C', are operated between the two reservoirs.

C receives heat Q_2 from θ_2, gives off heat Q_1 to θ_1, and performs mechanical work W on the outside.

C' receives heat Q'_2 from θ_2, gives off heat Q'_1 to θ_1, and performs mechanical work W on the outside.

Let us now reverse the direction of the Carnot cycle C', call it the reverse Carnot cycle \bar{C}', and consider a combined system $C + \bar{C}'$.

$C + \bar{C}'$ receives heat $Q'_1 - Q_1$ from θ_1, gives off heat $Q'_2 - Q_2$ to θ_2 and performs no work on the outside.

The next step is to examine whether $Q'_1 - Q_1$ is positive or negative.

If $Q'_1 - Q_1 > 0$, then $Q'_2 - Q_2 > 0$, because of the first law. This would, however, violate the Clausius statement.

If $Q'_1 - Q_1 < 0$, then $Q'_2 - Q_2 < 0$. The combined cycle, however, becomes equivalent with irreversible conduction of heat, which is in contradiction with the performance of the reversible Carnot cycle.

The only possibility is, then, $Q'_1 - Q_1 = 0$, and $Q'_2 - Q_2 = 0$.

An important conclusion is that all the Carnot cycles have the same performance regardless of the physical nature of the individual engine, i.e.,

$$Q_1 = Q_1(\theta_1, \theta_2, W), \quad Q_2 = Q_2(\theta_1, \theta_2, W).$$

(1.62)

Furthermore, if the same cycle is repeated, the heat and work quantities are doubled, and in general

$$Q_1(\theta_1, \theta_2, nW) = nQ_1(\theta_1, \theta_2, W), \quad Q_2(\theta_1, \theta_2, nW) = nQ_2(\theta_1, \theta_2, W);$$

(1.63)
and in turn
\[
\frac{Q_1(\theta_1, \theta_2, nW)}{Q_2(\theta_1, \theta_2, nW)} = \frac{Q_1(\theta_1, \theta_2, W)}{Q_2(\theta_1, \theta_2, W)}. \tag{1.64}
\]
This means that the ratio \(Q_2 / Q_1 \) depends only on \(\theta_1 \) and \(\theta_2 \), not on the amount of work \(W \). So,
\[
\frac{Q_2}{Q_1} = f(\theta_1, \theta_2), \tag{1.65}
\]
where \(f \) is a function which does not depend upon the type of the Carnot cycle. Let us suppose that two Carnot cycles are operated in a series combination as is shown in Fig. 1.4. Then, from the preceding argument,
\[
\frac{Q_2}{Q_1} = f(\theta_1, \theta_2), \quad \frac{Q_1}{Q_0} = f(\theta_0, \theta_1). \tag{1.66}
\]
If we look at the combination of the cycle \(C \), heat bath \(R_1 \), and cycle \(C' \) as another Carnot cycle, we have
\[
\frac{Q_3}{Q_0} = f(\theta_0, \theta_2). \tag{1.67}
\]
This means
\[
f(\theta_1, \theta_2) = \frac{f(\theta_0, \theta_2)}{f(\theta_0, \theta_1)}. \tag{1.68}
\]
1 The laws of thermodynamics

Since the left hand side of the equation does not depend upon θ_0, the right hand side of the equation is not allowed to contain θ_0. Therefore,

$$f(\theta_1, \theta_2) = \frac{\phi(\theta_2)}{\phi(\theta_1)}. \quad (1.69)$$

Equation (1.65) can be expressed as

$$\frac{Q_2}{Q_1} = \frac{\phi(\theta_2)}{\phi(\theta_1)}. \quad (1.70)$$

Based on the above finding, the thermodynamic temperature scale can be introduced according to the following equation:

$$\frac{Q_2}{Q_1} = \frac{T_2}{T_1}. \quad (1.71)$$

This equation, however, fixes only the ratio of the temperatures. In order to determine the scale of the temperature, two well defined fixed points are needed: one is the ice point and the other is the saturation vapor point of water under the standard atmospheric conditions, and the temperature difference between the two points is defined to be 100 degrees. When the Carnot cycle is operated between the heat baths kept at these temperatures, we have

$$\frac{T_0 + 100}{T_0} = \frac{Q_s}{Q_0}. \quad (1.72)$$

where T_0 is the ice point, Q_s is the quantity of heat received from the heat bath at the boiling point, and Q_0 is the quantity of heat given off to the heat source at the ice point.

In principle, it is possible to measure the ratio Q_s/Q_0, and the value must be independent of the physical systems used as the Carnot cycle. In this way the absolute scale of T_0 is found to be

$$T_0 = 273.15. \quad (1.73)$$

This scale of temperature is called the kelvin, or the absolute temperature, and is denoted by K. More recently, it has been agreed to use the triple point of water as the only fixed point, which has been defined to be 273.16 K.

From the practical point of view, the efficiency of an engine is an important quantity which is defined by

$$\eta = \frac{Q_2 - Q_1}{Q_2}. \quad (1.74)$$

\dagger After Lord Kelvin (William Thomson (1854)).
The efficiency of the Carnot cycle is independent of the physical system used as the Carnot cycle, and is expressed as
\[\eta = \frac{T_2 - T_1}{T_2}. \]
(1.75)

1.13 The Carnot cycle of an ideal gas

It will be established in this section that the temperature provided by the ideal gas thermometer is identical to the thermodynamic temperature. Let us consider a Carnot cycle using an ideal gas operated between the heat reservoirs kept at \(T_2 \) and \(T_1 \). The ideal gas is a substance for which the \(P, V, \Theta \) relation (among other properties) is given by
\[pV = nR\Theta, \]
(1.76)
where \(p \) is the hydrostatic pressure under which the gas is kept in a cylinder of volume \(V \) and in thermal equilibrium conditions at the ideal gas temperature \(\Theta \). \(R \) is a universal constant, independent of the type of gas, and \(n \) is the amount of gas measured in units of moles. \(\Theta \) is the ideal gas absolute temperature. Any real gas behaves very much like an ideal gas as long as the mass density is sufficiently small.

Let us assume that the Carnot cycle is made up of the following four stages:

Stage (i)
The ideal gas is initially prepared at state \(A(p_0, V_0, \Theta_1) \). The gas is then isolated from the heat bath and compressed adiabatically until the temperature of the gas reaches \(\Theta_2 \). At the end of this process the gas is in state \(B(p_1, V_1, \Theta_2) \).

Stage (ii)
The gas is brought into thermal contact with a heat bath at temperature \(\Theta_2 \) and it is now allowed to expand while the temperature of the gas is kept at \(\Theta_2 \) until the gas reaches the state \(C(p_2, V_2, \Theta_2) \). This process is an isothermal expansion.

Stage (iii)
The gas is again isolated from the heat bath and allowed to expand adiabatically until it reaches state \(D(p_3, V_3, \Theta_1) \).

Stage (iv)
The gas is brought into thermal contact with the heat bath at temperature \(\Theta_1 \) and then compressed isothermally until it is brought back to its initial state \(A(p_0, V_0, \Theta_1) \).

All the foregoing processes are assumed to be performed quasistatically and hence reversibly. It was shown in Sec. 1.8 that the pressure and volume of the ideal gas change according to the law \(pV^\gamma = \text{constant during an adiabatic process} \). Here, \(\gamma = C_p/C_V \).
Let us now examine the energy balance in each of the preceding processes. \(\gamma \) is assumed to be constant for the gas under consideration.

Process (i): \(A \rightarrow B \)
There is no transfer of heat during this process. The mechanical work performed upon the gas is

\[
W_1 = \int_{V_0}^{V_1} p \, dV,
\]

\[
pV^\gamma = p_0 V_0^\gamma = p_1 V_1^\gamma = k,
\]

\[
\int_{V_i}^{V_0} p \, dV = \int_{V_i}^{V_0} \frac{k}{V^\gamma} \, dV
\]

\[
= \frac{k}{\gamma - 1} \left[\frac{1}{V_1^{\gamma-1}} - \frac{1}{V_0^{\gamma-1}} \right]
\]

\[
= \frac{1}{\gamma - 1} \left[\frac{p_1 V_1^\gamma}{V_1^{\gamma-1}} - \frac{p_0 V_0^\gamma}{V_0^{\gamma-1}} \right]
\]

\[
= \frac{1}{\gamma - 1} (p_1 V_1 - p_0 V_0).
\]

(1.77)

Since

\[
p_0 V_0 = R' \Theta_1, \quad p_1 V_1 = R' \Theta_2,
\]

(1.78)