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CHAPTER 1

Overviews

1.1 Our objectives and approaches

This book is about modeling a large collection of interacting agents, and exam-
ining aggregate (deterministic) dynamics and associated stochastic fluctations.

There are two aspects or components in carrying out these objectives: dy-
namics, and random combinatorial analysis. The former is more or less self-
explanatory and familiar to economists, although some of the techniques that
are presented in this book may be new to them. The latter involves some facts
or results that are rather new in economics, such as obtaining statistical distri-
butions for cluster sizes of agents by types. More will be said on types later.

We regard economic processes as jump Markov processes, that is, continuous-
time Markov processes with at most countable state spaces, and analyze forma-
tions of subgroups or clusters of agents by types. Jump Markov processes allow
us to model group sentiments or pressure, such as fashion, fads, bandwagon
effects, and the like. A cluster is formed by agents who use the same choices
or decisions. Agents are thus identified with the rules they use at that point in
time. Agents generally change their minds – that is, types – over time. This
aspect is captured by specifying a set of transition rates in the jump Markov
processes. Distributions of cluster sizes matter, because a few of the larger clus-
ters, if and when formed, approximately determine the market excess demands
for whatever goods are in the markets. There are some new approaches to firm
size distributions as well.

Dynamics are represented by the master equations (the backward Chapman–
Kolmogorov equations) for the joint probability distributions of suitably defined
states of the collection of agents. The solutions of the master equations give us
stationary or equilibrium behavior of the model and some fluctuations about
them, obtained by solving the associated Fokker–Planck equations. Nonstation-
ary solutions give us information on the time profiles of interactions, and how
industries or sectors of economies mature or grow with time. These solutions
may require some approximations, such as expansion of the master equations in

1
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2 Overviews

some inverse powers of a parameter that represents the size of the model. In dis-
cussing multiple equilibria, we introduce a new equilibrium selection criterion,
and consider distributions of the sizes of the associated basins of attractions in
some random mapping contexts.

To fulfill our objectives, we use concepts such as partition vectors as state
vectors, which arise in examining patterns formed by partitions of agents by
types; Stirling numbers of the first and second kind, which have roots in combi-
natorial analysis; and distributions such as the Poisson–Dirichlet distributions
and the multivariate Ewens distribution. All of these are unfamiliar to tradi-
tionally trained economists and graduate students of economics. We therefore
present these as well as some others, as needs arise, to advance and support our
modeling tasks and views proposed in this book.

Our approach is finitary. We start with a finite number of agents, each of
whom is assumed to have a choice set – a set of at most countably many decision
rules or behavioral rules. We define a demographic profile of agents composed
of fractions of agents of the same type, with a finite number of total agents.
We may let the number of agents go to infinity later, but we do not start with
fractions of uncountably many agents arranged in a unit interval, for example
(a typical starting point of some models in the economic literature). Our finitary
approach is more work, but we reap a greater harvest of results. We may obtain
more information on the natures of fluctuations, and more insight into dynamics,
which get lost in the conventional approach.

Here is our approach in a nutshell. We start with a collection of a large, but
finite, number of microeconomic agents in some economic context. We first
specify a set of transition rates in some state space to model agent interactions
stochastically. Agents may be households, firms, or countries, depending on the
context of the models. Unlike examples in textbooks in probability, chemistry,
or ecology, the reader will recognize that our transition rates are endogenously
determined by considerations of value-function maximization associated with
evaluations of alternative choices that confront agents.

Then we analyze the master equations that incorporate specified transition
rates. Their size effects may be important in approximate analysis of the master
equations. Stationary or nonstationary solutions of the master equations are
then examined to draw their economic implications.

In models that focus on the decomposable random combinatorial aspects,
distributions of a few of the largest order statistics of the cluster size distributions
are examined to examine their economic consequences.

1.2 Partial list of applications

A number of models, mostly elementary or simple, are presented in Chap-
ters 4 through 11 to illustrate the methods and potential usefulness of the
proposed approaches. Some more elaborate models are found in parts of
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Chapters 8 through 11, with some additional supporting material for them in
Chapter 10.

One of the important consequences of our efforts is the derivation of aggre-
gate, or emergent, or evolutionary patterns of behavior of large collections
of agents. We deduce macroeconomic or sectoral properties or behavior of
the microeconomic agents, starting from probabilistic descriptions of individ-
ual agents. Thus, we go part way from the microeconomic specifications of
models to macroeconomic models, a level of models called mesoscopic by van
Kampen (1992). By mesoscopic, we mean that we can deduce (nearly) deter-
ministic average behavior and associated fluctuations. For example, we may
think of building sectoral models composed of a large number of firms as
mesoscopic models. Several or many such mesoscopic models may then be
connected, or aggregated, as macroeconomic models.

We examine with fresh and different views processes for diffusion of new
ideas or practices among firms in an industry, due to innovation, changing eco-
nomic and social environments, disturbances, or the appearance and spread of
new products among firms of an industrial sector, such as new manufacturing
processes, new inventions, new employment policies, and technical improve-
ments. We also examine a well-known model in the search literature, due to
Diamond (1982), from our finitary perspectives in Chapter 9. In taking a new
look at the Diamond model, we show a new probabilistic equilibrium selec-
tion criterion. In evaluating the Kiyotaki–Wright model (Kiyotaki and Wright
1993), which has similar dynamic structure to the Diamond model, we provide
more dynamic analysis, and respecify their model so that money traders hold
several units of money. Here, we show how partition vectors may be applied.

There are obviously many new results we can obtain in the area of indus-
trial organization, such as entry and exit problems, changing market shares
(Herfindahl index), or distributions of firm sizes or growth-rate distributions.

We also present, in Chapter 11, a simplified account of power laws that govern
distributions of large price differences or returns in prices of some financial as-
sets, and explanations of volatility switchings observed in financial time series,
by examining conditions under which two large subgroups of agents with two
opposing strategies form such that they largely determine the market excess
demands for some financial assets.

1.3 States: Vectors of fractions of types and partition vectors

Levels of detail in describing behavior of a large collection of agents of several
(or countably many) types dictate our choice of state variables.

Models are depicted in terms of configurations, namely patterns, or states,
in more technical terms, and how they or some functions of them evolve with
time. If we start our modeling task by specifying how sets of interacting agents
behave at the level of microeconomics, then we may next inquire how some
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subsets or subgroups of microeconomic agents behave by attempting to describe
their behavior in terms of less detailed state variables. These more aggregated
state variables, or variables averaged over some larger subsets of agents than
the original configurations, refer to model behavior at the aggregated, or more
macroeconomic, levels of description. We use rather less detailed, or less prob-
abilistic, specifications of states. Indeed, one of the insights we gain after many
model-building exercises is that some of the very detailed microeconomic des-
cription found in some of the economic literature disappears, or matters less,
as we describe agent behaviors averaged over larger sets of microeconomic
configurations.

At the highest level of aggregation we have macroeconomic models in terms
of macroeconomic variables. At a less aggregated level, we may have sectoral
models described in terms of sectoral variables, which are less aggregated than
the macroeconomic variables, but are more aggregated than microeconomic
variables.1 Stochastic description in terms of macroeconomic variables imply
deterministic laws and the fluctuations about them (van Kampen 1992, p. 57).

We seek to link models for collections of microeconomic agents, whose
behavior are described or stated by microeconomic specifications, with the ag-
gregate or global behavior, which corresponds to mesoscopic or macroeconomic
description.

1.3.1 Vectors of fractions

In this book, we use discrete states and models with finite or at most countable
state spaces. This choice of state spaces is based on the way we describe micro-
economic models and the details with which we describe behavior of agents – or,
more pertinently, the decisions or choices they make, or the way we aggregate
or incorporate microeconomic agents into macroeconomic models.

An example may help to clarify what we have in mind. At this preliminary
stage of our explanation, let us suppose that agents have binary choices, or
there are two types of agents, if we associate types with choices. The binary
choices may be to participate or not in some joint projects, or to buy or not to
buy some commodity or stocks at this point in time, etc. The nature of choices
varies from model to model and from context to context. Here, we merely
illustrate abstractly the ways states may be introduced. The two choices may
be labeled or represented by 1 and 0, say. Then the state of n agents could be
s = (s1, s2, . . . , sn), where si = 1 or si = 0, i = 1, 2, . . . , n.

1 To refer to variables at these intermediate levels we borrow a term from van Kampen (1992,
p. 185) and call them mesoscopic variables for mesoscopic models. According to him, a meso-
scopic quantity is a functional of the probability distribution (of states). He distinguishes meso-
scopic variable from macro-variables.
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This vector gives us a complete picture of who has chosen what. Thus, with
regard to the information on the choice patterns by n agents, we don’t need,
nor can we have, more detail than that provided by this state vector. This is the
microeconomic state at a point in time. We may then proceed to incorporate
mechanisms or interaction patterns that determine how they may revise their
choices over time, by specifying reward or cost structures and particulars on
externalities among agents.

In some cases, we may decide not to model the collection of agents with
that much detail. For example, identities of agents who have chosen 1 may
not be relevant to our objectives of constructing models. We may care merely
about the fraction of agents with choice 1, for example. Then,

∑
i si /n is the

information we need. Then we may proceed to specify how this demographic
or fractional compositional information of agents evolves with time. At this
level of completeness of describing the collection of a set of agents, the vector
(n1, n2), where ni is the number of agents with choice i = 1, 2, is a state vector.
So is the vector made of fractions of each type of agents. This vector is related
to the notion of empirical distribution in statistics. If the total number of agents
is fixed, then the scalar variable n1 or f1 = n1/(n1 + n2) serves as the state
variable.

With K choices or types, where K is larger than 2, detailed information
on the choice pattern is provided by the vector s, where si now takes on one
of K possible values, and choice patterns may be represented by the vector of
demographic fractions, or by a vector n = (n1, n2, . . . , nK ), where nj is the
total number of agents making the j th choice.

1.3.2 Partition vectors

This choice of state vector may look natural. There is, however, another possi-
bility. To understand this, let us borrow the language of the occupancy problem
in probability, and think of K unmarked or indistinguishable boxes into which
agents with the same choices (identical-looking balls) are placed. Let ai be the
number of boxes with i agents in them. With n agents distributed into K boxes,
we have

∑n
j =1 ja j = n, and

∑n
j =1 aj := Kn ≤ K . The first equation counts

the number of agents, and the second the number of occupied boxes.
The vector with these as as components is a state vector for some purposes.

In dealing with demographic distributions such as the number of firms in various
size classes, the numbers of employees, the amount of sales per month, and so
on, we are not interested in the identities of firms but in the number of firms
each size class, as in the histogram representations of the numbers of firms of
given characteristics or categories.

In some applications, we are faced with the problem of describing sets
of partitions of agents of the type called exchangeable random partitions by
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Kingman (1978a,b). The notion of partition vectors, in Zabell (1992), is just
the right notion for discussing models in which some types of agents play
a dominant role in determining market demands. This notion is discussed in
detail in Chapter 3, and applied in Chapter 11 among many places.

We have briefly mentioned two alternative choices for state vectors. One of
them is in terms of fractions of agents of each type or category. Instead of this
more obvious choice of state variables, Watterson (1976) has proposed another
way of describing states, which is less detailed than the one above using n. A
level of disaggregation, or a way of describing the delabeled composition of
a population of agents, is proposed that is suitable in circumstances in which
new types of agents appear continually and there is no theoretical upper limit
to the number of possible types. This is the so-called sampling-of-species
problem in statistics (see Zabell 1993). The state of a population is described
by the (unordered) set of type frequencies, i.e., fractions or proportions of dif-
ferent types, without stating which frequency belongs to which type. In the
context of economic modeling, this way of description does not require model
builders to know in advance how many or what types of agents are in the pop-
ulation. It is merely necessary to recognize that there are k distinct types in
his sample of size n, and that there are aj types with j agents or represent-
atives in the sample. Compositions of samples and populations at this level
are given by vectors a and b with components aj and bj , respectively, such
that

n∑

j =1

ja j = n,

n∑

j =1

aj = k,

and

n∑

j =1

jb j = n,

n∑

j =1

bj = K

in the population, where N is the number of agents in the population, and K the
number of distinct types, categories, or choices in the population, both being
possibly infinite.

1.4 Jump Markov processes

By associating types with the decisions or choices, we may think of groups in
which each agent has several alternative decisions to choose from. Agents may
change their types when types are associated with their decisions, actions, or
choices. In open models, agents of various types may, in addition, enter or leave
the group or collection. These changes of fractions may occur at any time, not
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necessarily at the equally spaced discrete points of discrete dynamics. They are
therefore modeled by continous-time (jump) Markov processes with finite or
countable state spaces. See Norris (1997).

Among Markov processes we use those with a finite or at most countable
states, and time running continuously. They are called jump or pure jump
Markov processes in the probability literature.

1.5 The master equation

Once states have been assigned to a collection of economic agents, their be-
havior over time is specified by the dynamics for the joint probabilities of the
states. Dynamics are set up by taking account of the probability fluxes into
and out of a specified state over a small interval of time. We use the backward
Chapman–Kolmogorov equation to do this accounting. We adopt the shorter
name that is used in the physics and ecology literature and call the dynamic
equation the master equation. This is an appropriate name because everything
of importance we need to know about the dynamic behavior can be deduced
from this equation. In particular we derive the dynamics for aggregate variables,
which we call the aggregate dynamics (roughly corresponding to macroe-
conomic dynamics) and the dynamics for the fluctuations of state variables
about the mean, or aggregate, values. The latter is called the Fokker–Planck
equation.

It should be emphasized that the master equation describes the time evo-
lution of the probability distribution of states, not the time evolution of the
states themselves. This distinction may seem unimportant to the reader, but it
is a crucial one and helps to avoid some technical difficulties. For example,
in a model with two types of agents of a fixed total number, the fraction of
one type of agents is often used as the state. The master equation describes
how the probability for the fraction of one type evolves with time, not the
time evolution of the fraction itself. The latter may exhibit some abnormal be-
havior at the extreme values of zero and one, but the probability distribution
cannot.

When the master equations admit stationary solutions, as some models in
this book do, we can deduce much from those distributions. Some nonstationary
distributions may be obtained by the method of probability generating functions,
or information on moments derived from cumulant generating functions. These
are discussed in Chapters 3 and 4.

In general, we use Taylor series expansion in inverse powers of some measure
of the model size, such as the number of agents in the model. We can show that in
the limit of an infinite number of agents we recover traditional macroeconomic
results. This is illustrated by reworking the well-known Diamond (1982) model
in our framework in Chapter 9.
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1.6 Decomposable random combinatorial structures

How do agents cluster or form subgroups in a market? What are the distributions
of fractions on (high-dimensional) simplexes? These questions essentially have
to do with random combinatorial structures such as random partitions. We
borrow from Watterson (1976), Watterson and Guess (1977), and, more recently,
Arratia (1992) and others to deal with the questions of multiplicities of micro-
economic states compatible with a set of observations of (macroeconomic or
mesoscopic) variables. In the second longest chapter of this book, Chapter 10,
we connect three types of transition rates with three types of distributions, and
discuss dynamics of clusters. Some of the results are then applied in Chapter
11, in which the two largest groups are on the opposite sides of the market and
their excess demands drive the price dynamics of the shares.

1.7 Sizes and limit behavior of large fractions

We use order statistics of the fractions in some of the later chapters of this
book. These have a well-defined limit distribution, called the Poisson–Dirichlet
distribution, as the number of agents goes to infinity. The probability density
of the first few of the fractions is later used in our discussion of approximations
of market excess demands by a few dominant fractions in Chapters 10 and 11.




