THE CAMBRIDGE HISTORY OF SCIENCE

VOLUME 5

The Modern Physical and Mathematical Sciences

Edited by
MARY JO NYE

CAMBRIDGE UNIVERSITY PRESS
CONTENTS

Illustrations  page xvii
Notes on Contributors  xix
General Editors’ Preface  xxv
Acknowledgments  xxix

Introduction: The Modern Physical and Mathematical Sciences
MARY JO NYE  1

PART I. THE PUBLIC CULTURES OF THE PHYSICAL SCIENCES AFTER 1800

1  Theories of Scientific Method: Models for the Physico-Mathematical Sciences
   NANCY CARTWRIGHT, STATHIS PSILLOS, AND HASOK CHANG  21
   Mathematics, Science, and Nature  22
   Realism, Unity, and Completeness  25
   Positivism  28
   From Evidence to Theory  29
   Experimental Traditions  32

2  Intersections of Physical Science and Western Religion in the Nineteenth and Twentieth Centuries
   FREDERICK GREGORY  36
   The Plurality of Worlds  37
   The End of the World  39
   The Implications of Materialism  43
   From Confrontation to Peaceful Coexistence to Reengagement  46
   Contemporary Concerns  49
Contents

3  A Twisted Tale: Women in the Physical Sciences in the Nineteenth and Twentieth Centuries  54

   MARGARET W. ROSSITER

   Precedents  54
   Great Exceptions  55
   Less-Well-Known Women  58
   Rank and File – Fighting for Access  59
   Women’s Colleges – A World of Their Own  61
   Graduate Work, (Male) Mentors, and Laboratory Access  62
   “Men’s” and “Women’s” Work in Peace and War  63
   Scientific Marriages and Families  65
   Underrecognition  66
   Post–World War II and “Women’s Liberation”  67
   Rise of Gender Stereotypes and Sex-Typed Curricula  70

4  Scientists and Their Publics: Popularization of Science in the Nineteenth Century  72

   DAVID M. KNIGHT

   Making Science Loved  74
   The March of Mind  75
   Read All About It  76
   Crystal Palaces  77
   The Church Scientific  78
   Deep Space and Time  80
   Beyond the Fringe  83
   A Second Culture?  85
   Talking Down  87
   Signs and Wonders  88

5  Literature and the Modern Physical Sciences  91

   PAMELA GOSSIN

   Two Cultures: Bridges, Trenches, and Beyond  93
   The Historical Interrelations of Literature and Newtonian Science  95
   Literature and the Physical Sciences after 1800:
      Forms and Contents  98
   Literature and Chemistry  99
   Literature and Astronomy, Cosmology, and Physics  100
   Interdisciplinary Perspectives and Scholarship  103
   Literature and the Modern Physical Sciences in the History of Science  106
   Literature and the Modern Physical Sciences: New Forms and Directions  108
PART II. DISCIPLINE BUILDING IN THE SCIENCES:
PLACES, INSTRUMENTS, COMMUNICATION

6 Mathematical Schools, Communities, and Networks 113
   David E. Rowe
   Texts and Contexts 114
   Shifting Modes of Production and Communication 117
   Mathematical Research Schools in Germany 120
   Other National Traditions 123
   Göttingen’s Modern Mathematical Community 127
   Pure and Applied Mathematics in the Cold War Era
       and Beyond 129

7 The Industry, Research, and Education Nexus 133
   Terry Shinn
   Germany as a Paradigm of Heterogeneity 134
   France as a Paradigm of Homogeneity 138
   England as a Case of Underdetermination 143
   The United States as a Case of Polymorphism 147
   The Stone of Sisyphus 152

8 Remaking Astronomy: Instruments and Practice
   in the Nineteenth and Twentieth Centuries 154
   Robert W. Smith
   The Astronomy of Position 154
   Different Goals 160
   Opening Up the Electromagnetic Spectrum
       Into Space 167
   Very Big Science 170

9 Languages in Chemistry 174
   Bernadette Bensaude-Vincent
   1787: A “Mirror of Nature” to Plan the Future 176
   1860: Conventions to Pacify the Chemical Community 181
   1930: Pragmatic Rules to Order Chaos 186
   Toward a Pragmatic Wisdom 189

10 Imagery and Representation in Twentieth-Century
   Physics 191
      Arthur I. Miller
      The Twentieth Century 193
      Albert Einstein: Thought Experiments 194
      Types of Visual Images 195
      Atomic Physics during 1913–1925: Visualization Lost 197
      Atomic Physics during 1925–1926: Visualization versus
          Visualizability 200
## Contents

Atomic Physics in 1927: Visualizability Redefined 203
Nuclear Physics: A Clue to the New Visualizability 205
Physicists Rerrepresent 208
The Deep Structure of Data 209
Visual Imagery and the History of Scientific Thought 212

### PART III. CHEMISTRY AND PHYSICS: PROBLEMS THROUGH THE EARLY 1900s

11 The Physical Sciences in the Life Sciences 219
FREDERIC L. HOLMES
Applications of the Physical Sciences to Biology in the Seventeenth and Eighteenth Centuries 221
Chemistry and Digestion in the Eighteenth Century 224
Nineteenth-Century Investigations of Digestion and Circulation 226
Transformations in Investigations of Respiration 230
Physiology and Animal Electricity 233

12 Chemical Atomism and Chemical Classification 237
HANS-WERNER SCHÜTT
Chemical versus Physical Atoms 238
Atoms and Gases 239
Calculating Atomic Weights 241
Early Attempts at Classification 243
Types and Structures 245
Isomers and Stereochemistry 248
Formulas and Models 250
The Periodic System and Standardization in Chemistry 251
Two Types of Bonds 254

13 The Theory of Chemical Structure and Its Applications 255
ALAN J. ROCKE
Early Structuralist Notions 255
Electrochemical Dualism and Organic Radicals 257
Theories of Chemical Types 259
The Emergence of Valence and Structure 262
Further Development of Structural Ideas 265
Applications of the Structure Theory 269

14 Theories and Experiments on Radiation from Thomas Young to X Rays 272
SUNGOOK HONG
The Rise of the Wave Theory of Light 272
New Kinds of Radiation and the Idea of the Continuous Spectrum 277
The Development of Spectroscopy and Spectrum Analysis 280
## Contents

The Electromagnetic Theory of Light and the Discovery of X Rays  
Theory, Experiment, Instruments in Optics  

15 **Force, Energy, and Thermodynamics**  
CROSBIE SMITH  
The Mechanical Value of Heat  
A Science of Energy  
The Energy of the Electromagnetic Field  
Recasting Energy Physics  

16 **Electrical Theory and Practice in the Nineteenth Century**  
BRUCE J. HUNT  
Early Currents  
The Age of Faraday and Weber  
Telegraphs and Cables  
Maxwell  
Cables, Dynamos, and Light Bulbs  
The Maxwellians  
Electrons, Ether, and Relativity  

PART IV. ATOMIC AND MOLECULAR SCIENCES IN THE TWENTIETH CENTURY

17 **Quantum Theory and Atomic Structure, 1900–1927**  
OLIVIER DARRIGOL  
The Quantum of Action  
Quantum Discontinuity  
From Early Atomic Models to the Bohr Atom  
Einstein and Sommerfeld on Bohr's Theory  
Bohr's Correspondence Principle versus Munich Models  
A Crisis, and Quantum Mechanics  
Quantum Gas, Radiation, and Wave Mechanics  
The Final Synthesis  

18 **Radioactivity and Nuclear Physics**  
JEFF HUGHES  
Radioactivity and the “Political Economy” of Radium  
Institutionalization, Concentration, and Specialization: The Emergence of a Discipline, 1905–1914  
“An Obscure Oddity”? Radioactivity Reconstituted, 1919–1925  
Instruments, Techniques, and Disciplines: Controversy, 1924–1932  
From “Radioactivity” to “Nuclear Physics”: A Discipline Transformed, 1932–1940  
Nuclear Physics and Particle Physics: Postwar Differentiation, 1945–1960  

### Contents

#### 19 Quantum Field Theory: From QED to the Standard Model

SILVAN S. SCHWEBER

Quantum Field Theory in the 1930s 377
From Pions to the Standard Model: Conceptual Developments in Particle Physics 382
Quarks 388
Gauge Theories and the Standard Model 391

#### 20 Chemical Physics and Quantum Chemistry in the Twentieth Century

ANA SIMÕES

Periods and Concepts in the History of Quantum Chemistry 395
The Emergence of Quantum Chemistry and the Problem of Reductionism 400
The Emergence of Quantum Chemistry in National Context 404
Quantum Chemistry as a Discipline 407
The Uses of Quantum Chemistry for the History and Philosophy of the Sciences 411

#### 21 Plasmas and Solid-State Science

MICHAEL ECKERT

Prehistory: Contextual versus Conceptual 414
World War II: A Critical Change 417
Formative Years, 1945–1960 420
Consolidation and Ramifications 425
Models of Scientific Growth 427

#### 22 Macromolecules: Their Structures and Functions

YASU FURUKAWA

From Organic Chemistry to Macromolecules 430
Physicalizing Macromolecules 435
Exploring Biological Macromolecules 437
The Structure of Proteins: The Mark Connection 440
The Path to the Double Helix: The Signer Connection 443

### PART V. MATHEMATICS, ASTRONOMY, AND COSMOLOGY SINCE THE EIGHTEENTH CENTURY

#### 23 The Geometrical Tradition: Mathematics, Space, and Reason in the Nineteenth Century

JOAN L. RICHARDS

The Eighteenth-Century Background 450
Geometry and the French Revolution 454
Geometry and the German University 458
## Contents

Geometry and English Liberal Education 460  
Euclidean and Non-Euclidean Geometry 462  
Geometry in Transition: 1850–1900 464

### 24 Between Rigor and Applications: Developments in the Concept of Function in Mathematical Analysis 468

**Jesper Lützen**  
Euler’s Concept of Function 469  
New Function Concepts Dictated by Physics 470  
Dirichlet’s Concept of Function 471  
Exit the Generality of Algebra – Enter Rigor 474  
The Dreadful Generality of Functions 477  
The Delta “Function” 479  
Generalized Solutions to Differential Equations 481  
Distributions: Functional Analysis Enters 484

### 25 Statistics and Physical Theories 488

**Theodore M. Porter**  
Statistical Thinking 489  
Laws of Error and Variation 491  
Mechanical Law and Human Freedom 494  
Regularity, Average, and Ensemble 498  
Reversibility, Recurrence, and the Direction of Time 500  
Chance at the Fin de Siècle 503

### 26 Solar Science and Astrophysics 505

**Joann Eisberg**  
Solar Physics: Early Phenomenology 508  
Astronomical Spectroscopy 510  
Theoretical Approaches to Solar Modeling: Thermodynamics and the Nebular Hypothesis 512  
Stellar Spectroscopy 514  
From the Old Astronomy to the New 516  
Twentieth-Century Stellar Models 518

### 27 Cosmologies and Cosmogonies of Space and Time 522

**Helge Kragh**  
The Nineteenth-Century Heritage 522  
Galaxies and Nebulae until 1925 523  
Cosmology Transformed: General Relativity 525  
An Expanding Universe 526  
Nonrelativistic Cosmologies 529  
Gamow’s Big Bang 530  
The Steady State Challenge 531  
Radio Astronomy and Other Observations 532  
A New Cosmological Paradigm 533  
Developments since 1970 534
Contents

28 The Physics and Chemistry of the Earth 538
   Naomi Oreskes and Ronald E. Doel
   Traditions and Conflict in the Study of the Earth 539
   Geology, Geophysics, and Continental Drift 542
   The Depersonalization of Geology 545
   The Emergence of Modern Earth Science 549
   Epistemic and Institutional Reinforcement 552

PART VI. PROBLEMS AND PROMISES AT THE END
OF THE TWENTIETH CENTURY

29 Science, Technology, and War 561
   Alex Roland
   Patronage 562
   Institutions 566
   Qualitative Improvements 568
   Large-Scale, Dependable, Standardized Production 569
   Education and Training 570
   Secrecy 571
   Political Coalitions 573
   Opportunity Costs 574
   Dual-Use Technologies 575
   Morality 577

30 Science, Ideology, and the State: Physics in the
   Twentieth Century 579
   Paul Josephson
   Soviet Marxism and the New Physics 580
   Aryan Physics and Nazi Ideology 586
   Science and Pluralist Ideology: The American Case 589
   The Ideological Significance of Big Science and Technology 592
   The National Laboratory as Locus of Ideology and Knowledge 594

31 Computer Science and the Computer Revolution 598
   William Aspray
   Computing before 1945 598
   Designing Computing Systems for the Cold War 601
   Business Strategies and Computer Markets 604
   Computing as a Science and a Profession 607
   Other Aspects of the Computer Revolution 611

32 The Physical Sciences and the Physician's Eye:
   Dissolving Disciplinary Boundaries 615
   Bettyann Holtzmann Kevles
   Origins of CT in Academic and Medical Disciplines 617
   Origins of CT in Private Industry 621
Contents

From Nuclear Magnetic Resonance to Magnetic Resonance Imaging 625
MRI and the Marketplace 629
The Future of Medical Imaging 631

Global Environmental Change and the History of Science 634
   JAMES RODGER FLEMING
   Enlightenment 636
   Literary and Scientific Transformation: The American Case 638
   Scientific Theories of Climatic Change 641
   Global Warming: Early Scientific Work and Public Concern 645
   Global Cooling, Global Warming 648

Index 651
ILLUSTRATIONS

8.1 The Dorpat Refractor, a masterpiece by Fraunhofer page 157
8.2 The Leviathan of Parsonstown 161
8.3 The Hubble Space Telescope in the payload bay of the Space Shuttle Enterprise 171
10.1 An Aristotelian representation of a cannonball’s trajectory 192
10.2 Galileo’s 1608 drawing of the parabolic fall of an object 192
10.3 Representations of the atom according to Niels Bohr’s 1913 atomic theory 198
10.4 The difference between visualization and visualizability 206
10.5 Representations of the Coulomb force 208
10.6 Representations of the atom and its interactions with light 210
10.7 Bubble chamber and “deep structure” 211
10.8 Images of data and their “deep structure” 213
10.9 Representations of the atom 214
INTRODUCTION

The Modern Physical and Mathematical Sciences

Mary Jo Nye

The modern historical period from the Enlightenment to the mid-twentieth century has often been called an age of science, an age of progress or, using Auguste Comte's term, an age of positivism.¹

Volume 5 in The Cambridge History of Science is largely a history of the nineteenth- and twentieth-century period in which mathematicians and scientists optimistically aimed to establish conceptual foundations and empirical knowledge for a rational, rigorous scientific understanding that is accurate, dependable, and universal. These scientists criticized, enlarged, and transformed what they already knew, and they expected their successors to do the same. Most mathematicians and scientists still adhere to these traditional aims and expectations and to the optimism identified with modern science.²

By way of contrast, some writers and critics in the late twentieth century characterized the waning years of the twentieth century as a postmodern and postpositivist age. By this they meant, in part, that there is no acceptable master narrative for history as a story of progress and improvement grounded on scientific methods and values. They also meant, in part, that subjectivity and relativism are to be taken seriously both cognitively and culturally, thereby undermining claims for scientific knowledge as dependable and privileged knowledge.³

Mary Jo Nye

Historians of science have addressed these late-twentieth-century issues by greatly expanding their tools of study in terms of subjects, methods, themes, and interpretations. Most historians of science have come to believe that there can be no unified history of science predicated upon the assumption of a “logic” or “method” of science. Some historians have concluded that there is no longer any place for a grand narrative of science (“the history of science”) or even of a single scientific discipline (“the history of chemistry”). As a result, much recent work in the history of science has focused on histories of scientific practices, scientific controversies, and scientific disciplines in very local times and spaces.4

Still, larger narratives persist, as demonstrated, for example, in the very successful series of single-authored Norton histories of science published in the 1990s, including *The Norton History of Chemistry* and *The Norton History of Environmental Sciences.*5 Other examples of comprehensive histories include studies of twentieth-century physics, such as Helge Kragh’s history of physics in the twentieth century and Joseph S. Fruton’s history of biochemistry and molecular biology as the interplay of chemistry and biology.6

The chapters in Volume 5 of *The Cambridge History of Science* represent a variety of investigative and interpretive strategies, which together demonstrate the fertile complementarity in history of science and science studies of insights and explanations from intellectual history, social history, and cultural studies.

It should be noted that the biographical genre of history is explicitly excluded as a focus for any one chapter in the volume, although individual figures, not surprisingly, often loom large. Among these are William Whewell, Hermann von Helmholtz, William Thomson (Lord Kelvin), and Albert Einstein. In addition, none of the chapters has a specifically national focus, since Volume 8 in the *Cambridge History of Science* series concentrates precisely on the modern sciences in national and international contexts.7

---

Introduction

Most authors in this volume have provided a largely Western narrative of their subjects, suggesting to the reader that historians of science in the twenty-first century still have much to write about modern scientists and scientific work in non-Western cultures. Some common themes and interpretive frameworks run through the volume, as detailed in the following discussion. Perhaps most striking among leitmotifs is historians’ continuing preoccupation with Thomas S. Kuhn’s characterizations of everyday science and scientific revolutions. Historians’ decisions to explain scientific traditions and scientific change in terms of gradual evolution or abrupt revolution remain at the core of interpretive frameworks in the history of science.

PART I. THE PUBLIC CULTURE OF THE PHYSICAL SCIENCES AFTER 1800

The first section of the volume focuses on the public culture of the modern physical and mathematical sciences, with emphasis on the Western European and North American countries in which these physical sciences were largely institutionalized until the early twentieth century.

Nancy Cartwright, Stathis Psillos, and Hasok Chang lay out various expectations of modern philosophical writers and scientific practitioners about what they hoped to achieve by defining and employing “scientific method,” whether inductive or deductive, empiricist or rationalist, realist or conventionalist, theory laden or measurement dependent in normative and operative outlines. Like Frederick Gregory in his discussion of the intersections of religion and science, the coauthors note the importance for many scientists (for example, Albert Einstein around 1900 or Steven Weinberg around 2000) of a Pythagorean-like belief in the mathematical structure of the world, or what Weinberg has called the kinds of law that correspond “to something as real as anything else we know.”

Gregory, like David M. Knight in his essay on scientists and their publics, describes a nineteenth-century European world in which religion and science

8 However, see, e.g., Lewis Pyenson, Civilizing Missions: Exact Sciences and French Overseas Expansion, 1830–1940 (Baltimore: Johns Hopkins University Press, 1993), and Zaheer Baber, The Science of Empire: Scientific Knowledge, Civilization, and Colonial Rule in India (Albany: State University of New York Press, 1996).


were held to be compatible in the face of increasing secularization. William Whewell stood almost alone among scientific intellectuals in opposing on religious grounds the hypothesis of the plurality of worlds. James Clerk Maxwell, the brothers William and James Thomson, Louis Pasteur, and Max Planck all found science and religion mutually supportive, once extreme statements of scientific materialism were eliminated. Gregory notes the paradox that scientists and theologians shared a belief in the existence of foundational principles for natural phenomena, while not always agreeing on how properly to characterize these first principles.

Gregory also notes a link between religion and science in a shared gender bias toward membership in the community of scientists, a theme taken up by Margaret W. Rossiter in her history of the exclusion of women from scientific education and scientific organizations. Although there have been relatively few women in the physical sciences in comparison to men, Marie Curie nonetheless is one of the best known of all scientists. Female physicists currently are found in much higher proportions in countries outside Japan, the United States, the United Kingdom, and Germany. Yet, this fact may not necessarily indicate greater opportunities for women so much as a gendered proletarianization of university educators in some countries.

Some of Rossiter’s female scientists figure, as well, in Knight’s discussion of the popularization of science, not because women were lecturing in public places like the Friday evening lectures of the Royal Institution, but because they were writing widely read and commercially successful books, such as Jane Marcet’s *Conversations on Chemistry* (1807) and Mary Somerville’s *Connexion of the Physical Sciences* (1834).

Knight notes, as does Pamela Gossin, the extraordinary popularity of the science of chemistry for the early-nineteenth-century imagination, a popularity that was eclipsed in the next decades by geology. Early in the nineteenth century, light, heat, electricity, magnetism, and the discovery of new elements – all parts of chemistry – excited attention. By century’s end it was “auras” and table rapping that were the rage, along with X rays that could be used to see through human flesh.

We became familiar in the twentieth century with the idea of a polarization between the “two cultures” of the sciences and the humanities. Knight and Gossin remind us of the many scientists who have themselves written literature and poetry (among them Davy, Maxwell, C. P. Snow, Primo Levi, Carl Sagan, and Roald Hoffmann), as well as the novelists and poets who have studied the sciences and incorporated scientific elements into their work (Mary Shelley, Nathaniel Hawthorne, Edgar Allan Poe, Aleksandr S. Pushkin, Honoré de Balzac, Emile Zola, James Joyce, Virginia Woolf, Vladimir Nabokov). The science-educated novelist H. G. Wells appears and reappears in chapters of this volume. From Jonathan Swift and William Blake to Bertolt Brecht and Friedrich Dürrenmatt, scientists and their work have figured in the literary and artistic products of public culture.
Introduction

PART II. DISCIPLINE BUILDING IN THE SCIENCES: PLACES, INSTRUMENTS, COMMUNICATION

If natural philosophy, natural theology, chemical philosophy, and natural history were the fields of inquiry for the generalist savant who flourished in the eighteenth and early nineteenth centuries, scientific specialisms were to proliferate during the nineteenth century into disciplinary boundaries that enrolled professional “scientists” (the English term invented by William Whewell in 1833) in the classrooms, societies, and bureaucracies. The intricacies of discipline building have elicited considerable attention from historians of science in the last few decades, as has the construction of research schools and research traditions.

Among scientific disciplines, mathematics has been regarded as the foundational science since at least the time of Comte. Many mathematicians and historians of mathematics, as David E. Rowe points out, have never doubted the cumulative nature of mathematical knowledge and its reflection of a Platonic realm of permanent truths. Yet mathematics, too, is an intellectual and social activity that produces knowledge, sometimes by apparent revolutionary breakthroughs, as in the case of Georg Cantor’s set theory, but also in the ongoing work of the normal production of university lecture notes, paradigmatic textbooks, and research journals. The result has been, as Rowe puts it, “vast quantities of obsolete materials,” as well as revolutions, rediscoveries, and transformations of methods and insights long discarded.

Rowe insists particularly on the importance in the history of modern mathematics of the research seminars and of oral knowledge transmissions that took root in small German university towns in the early nineteenth century. These resulted in informal groups with intellectual orientation and loyalty to a particular mentor. National differences existed, for example, in the distinctive tradition of mixed mathematics in England.

National differences are at the heart of Terry Shinn’s investigation of the relationships among science and engineering education, research capacity, and industrial performance in Germany, France, England, and the United States. Shinn takes the not-uncontroversial position that there has been a difference in economic achievement among these nations and that it might be correlated with the aims and structures of scientific education. Whereas Rowe emphasizes that neohumanist scholarship developed in Germany specifically in opposition to what post-Napoleonic Germans called the “school learning” of the French, Shinn emphasizes the successful linking of German scientific education and research with the needs of German industry, particularly in mechanics, chemistry, and electricity by the end of the nineteenth century.

At the heart of discipline building are not only the sites and spaces for the disciplines but also the array of instruments and the means of communication
that define and mark off one intellectual field from another. Robert W. Smith's analysis of astronomical instrumentation notes striking changes in kind and scale that marked the history of astronomy from Giovanni Piazzi's 1801 discovery of an asteroid, using an altazimuth circle, to the 1990 launching of the Hubble Space Telescope. As Smith makes clear, the improvement of telescopes, both optical and radio, often was a goal in itself, rather than a means of addressing theoretical questions. Astronomy contributed its fair share in the nineteenth century to what historians have characterized as obsession with precision measurement.

As in other scientific disciplines in the twentieth century, the expense and the patronage of astronomy became ever greater after the Second World War. Like nuclear physicists, astronomers found themselves working in new kinds of organization, for example, the international university consortium, in which they collaborated with engineers, machinists, physicists, and chemists. In such large enterprises, as in smaller venues, communication patterns of scientists became crucial to disciplinary identities and distinctions, as well as to the accomplishment of original work.

Bernadette Bensaude-Vincent treats communication patterns and the construction of scientific languages in modern chemistry, while Arthur I. Miller focuses on changes in imagery and representation in modern physics, showing how language and image are instruments or tools for expressing theories and making predictions and discoveries, as well as for establishing group identity.

While some languages and images changed dramatically in intent and content over time, others remained remarkably stable. A small group of French chemists in 1787 famously created an artificial and theory-laden language for a new, antiphlogistonist chemistry, in which, as Bensaude puts it, the binomial name was to be a mirror image of the operations of chemical decomposition. This formalist and operationalist project succeeded quickly, despite objections to the French language from foreignchemists and opposition to theoretical names from pharmacists and artisans, who commonsensically preferred historical and descriptive names. Later projects for chemical nomenclature proved more conventional and pragmatic in design, perhaps because they were truly international and more consensual.

Miller's history of visual imagery in physics is similarly one of controversy and compromise among scientists. In this history, Miller distinguishes between visual images rooted in intuition (\textit{Anschauung}) and visual images seated in perception (\textit{Anschaulichkeit}). Hinting at parallels with the artistic forms developed by Pablo Picasso, Georges Braque, and, later, Mark Rothko, Miller details the increasingly abstract visualization adopted by Einstein, Werner Heisenberg and, later, Richard Feynmann. Yet, Miller argues, there is ontological realist content to Feynmann's diagrams. “All modern scientists,” says Miller, “are scientific realists.”
Introduction

PART III. CHEMISTRY AND PHYSICS: PROBLEMS THROUGH THE EARLY 1900s

In turning to specific disciplinary areas of scientific study in the nineteenth and twentieth centuries, Parts III, IV, and V of this volume loosely employ the overlapping categories of chemistry and physics, atomic and molecular sciences, mathematics, astronomy, and cosmology, noting that these categories sometimes can be identified with professional disciplines and experts (chemistry, chemist) and sometimes not. Very different historical approaches are taken by the authors: intellectual history or social history, national traditions or local practices, gradual transitions or radical breaks.

Frederic L. Holmes disputes the long-standing claim, originated by scientists themselves, that nineteenth-century experimentalists, such as Helmholtz and Emile Dubois-Reymond, broke in the 1840s with vitalist presuppositions, providing a “turning point” for the reductionist application of the laws of physics and chemistry to living processes. On the contrary, Holmes argues that nineteenth-century scientists simply had more powerful concepts and methods available than had their predecessors for the exploration and characterization of digestion, respiration, nervous sensation, and other “vital” processes. Earlier investigators pursued similar aims, but with less satisfactory means at their disposal.

While historians and scientists often speak of a chemical revolution associated with the atomism of John Dalton, Hans-Werner Schütt notes the ongoing and unresolved discussions throughout the nineteenth century about the relationship between what chemists called “chemical atoms” (corresponding to chemical elements) and what natural philosophers and physicists treated as “physical atoms” (corresponding to indivisible corpuscles). Calculating relative atomic weights, defining the standard of comparison for atomic weights, classifying simple and complex substances and their behaviors by means of chemical symbols and systematic tables: All of these tasks were continuing challenges for chemists throughout the century.

What constituted a chemical fact or conclusive evidence for a formula, a classification, or a theory? Schütt relates Justus Liebig’s conviction that “theories are expressions of contemporary views . . . only the facts are true.” Alan J. Rocke notes August Kekulé’s remark that it is an “actual fact,” not a “convention,” that sulfur and oxygen are each equivalent to two atoms of hydrogen. J. J. Berzelius distinguished between “empirical” and “rational” formulas for chemical molecules, one based in laboratory analysis and the second based in theory. These chemists were savvy about scientific epistemology. Yet they were not quick to adopt a new theory. Rocke has found that nearly all active organic chemists who were more than forty years old in 1858 ignored Kekulé’s structure theory, while the younger generation took
it on. However, by the 1870s the structure theory provided a framework not only for academic chemistry but also for an expanding German chemical industry.

The reciprocal relationship between scientific innovation and industrial development is more fully developed in Crosbie Smith's study of energy and Bruce J. Hunt’s analysis of electrical science. Sungook Hong also discusses the interplay among theoretical concept, laboratory effect, and technological artifact.

Hong challenges the usual history of nineteenth-century theories of light and radiation as a story of revolution. Many accounts of the wave versus particle theories of light attribute Fresnel's winning of the 1819 Academy of Sciences prize to his memoir's good fit with experimental data, in combination with the declining political and social fortunes of Laplacian physicists. Drawing upon an analysis by Jed Z. Buchwald, Hong concedes that Fresnel's mathematics fit the data, but adds that the prize-awarding jury at the time saw no significant physical hypothesis in Fresnel's work that would inhibit them from continuing to employ a ray (emission) analysis for studying light. In this case, as in the history of theories and experiments on the spectra of heat, light, and chemical (ultraviolet) radiations, Hong sees a process of "prolonged confusion" and gradual consensus, without crucial experiments, in the service of precise measurement.

Crosbie Smith addresses the question of simultaneous discovery, disputing Kuhn's presumption that energy was something in nature to be discovered. At the same time, Smith shows some of Kuhn's preoccupation with the means by which a paradigm is constituted. For Smith, it was North British (Scottish) cultures of engineering and Presbyterianism that made James Thomson and William Thomson determined to study the problem of the waste of useful work and to effect a reform of physical science, as they replaced the language and assumptions of action-at-a-distance and mechanical reversibility with a natural philosophy of energy and its transformations. In this aim, in Smith's analysis, the Thomson brothers were joined by Maxwell, most notably in his *Treatise on Electricity and Magnetism* (1873).

Hunt is less concerned with Presbyterianism than with technology, narrating, consistently with Crosbie Smith's account, the triumph of William Thomson's scientific approach to electrical engineering in the completion of Cyrus Field's venture for laying trans-Atlantic telegraphic cables during 1865–6. Hunt explains the influential reformulation of Maxwell's electromagnetic theory by Oliver Heaviside and by Heinrich Hertz in the 1880s, noting the gap between the continental action-at-a-distance approach to electromagnetism and Maxwell's field concept. An important linkage between the two was made in H. A. Lorentz's theory of tiny charges that are able

---