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CHAPTER ONE

Introduction

1.1 GENERAL

1.1.1 HISTORICAL BACKGROUND

The development of modern computational fluid dynamics (CFD) began with the ad-
vent of the digital computer in the early 1950s. Finite difference methods (FDM) and
finite element methods (FEM), which are the basic tools used in the solution of par-
tial differential equations in general and CFD in particular, have different origins. In
1910, at the Royal Society of London, Richardson presented a paper on the first FDM
solution for the stress analysis of a masonry dam. In contrast, the first FEM work was
published in the Aeronautical Science Journal by Turner, Clough, Martin, and Topp
for applications to aircraft stress analysis in 1956. Since then, both methods have been
developed extensively in fluid dynamics, heat transfer, and related areas.

Earlier applications of FDM in CFD include Courant, Friedrichs, and Lewy [1928],
Evans and Harlow [1957], Godunov [1959], Lax and Wendroff [1960], MacCormack
[1969], Briley and McDonald [1973], van Leer [1974], Beam and Warming [1978], Harten
[1978, 1983], Roe [1981, 1984], Jameson [1982], among many others. The literature on
FDM in CFD is adequately documented in many text books such as Roache [1972,
1999], Patankar [1980], Peyret and Taylor [1983], Anderson, Tannehill, and Pletcher
[1984, 1997], Hoffman [1989], Hirsch [1988, 1990], Fletcher [1988], Anderson [1995],
and Ferziger and Peric [1999], among others.

Earlier applications of FEM in CFD include Zienkiewicz and Cheung [1965], Oden
[1972, 1988], Chung [1978], Hughes et al. [1982], Baker [1983], Zienkiewicz and Taylor
[1991], Carey and Oden [1986], Pironneau [1989], Pepper and Heinrich [1992]. Other
contributions of FEM in CFD for the past two decades include generalized Petrov-
Galerkin methods [Heinrich et al., 1977; Hughes, Franca, and Mallett, 1986; Johnson,
1987], Taylor-Galerkin methods [Donea, 1984; Löhner, Morgan, and Zienkiewicz, 1985],
adaptive methods [Oden et al., 1989], characteristic Galerkin methods [Zienkiewicz
et al., 1995], discontinuous Galerkin methods [Oden, Babuska, and Baumann, 1998],
and incompressible flows [Gresho and Sani, 1999], among others.

There is a growing evidence of benefits accruing from the combined knowledge
of both FDM and FEM. Finite volume methods (FVM), because of their simple data
structure, have become increasingly popular in recent years, their formulations being
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4 INTRODUCTION

related to both FDM and FEM. The flowfield-dependent variation (FDV) methods
[Chung, 1999] also point to close relationships between FDM and FEM. Therefore,
in this book we are seeking to recognize such views and to pursue the advantage of
studying FDM and FEM together on an equal footing.

Historically, FDMs have dominated the CFD community. Simplicity in formulations
and computations contributed to this trend. FEMs, on the other hand, are known to be
more complicated in formulations and more time-consuming in computations. However,
this is no longer the case in many of the recent developments in FEM applications. Many
examples of superior performance of FEM have been demonstrated. Our ultimate goal
is to be aware of all advantages and disadvantages of all available methods so that if
and when supercomputers grow manyfold in speed and memory storage, this knowledge
will be an asset in determining the computational scheme capable of rendering the most
accurate results, and not be limited by computer capacity. In the meantime, one may
always be able to adjust his or her needs in choosing between suitable computational
schemes and available computing resources. It is toward this flexibility and desire that
this text is geared.

1.1.2 ORGANIZATION OF TEXT

This book covers the basic concepts, procedures, and applications of computational
methods in fluids and heat transfer, known as computational fluid dynamics (CFD).
Specifically, the fundamentals of finite difference methods (FDM) and finite element
methods (FEM) are included in Parts Two and Three, respectively. Finite volume meth-
ods (FVM) are placed under both FDM and FEM as appropriate. This is because FVM
can be formulated using either FDM or FEM. Grid generation, adaptive methods, and
computational techniques are covered in Part Four. Applications to various physical
problems in fluids and heat transfer are included in Part Five.

The unique feature of this volume, which is addressed to the beginner and the prac-
titioner alike, is an equal emphasis of these two major computational methods, FDM
and FEM. Such a view stems from the fact that, in many cases, one method appears
to thrive on merits of other methods. For example, some of the recent develop-
ments in finite elements are based on the Taylor series expansion of conservation vari-
ables advanced earlier in finite difference methods. On the other hand, unstructured
grids and the implementation of Neumann boundary conditions so well adapted in finite
elements are utilized in finite differences through finite volume methods. Either finite
differences or finite elements are used in finite volume methods in which in some cases
better accuracy and efficiency can be achieved. The classical spectral methods may be
formulated in terms of FDM or they can be combined into finite elements to generate
spectral element methods (SEM), the process of which demonstrates usefulness in di-
rect numerical simulation for turbulent flows. With access to these methods, readers are
given the direction that will enable them to achieve accuracy and efficiency from their
own judgments and decisions, depending upon specific individual needs. This volume
addresses the importance and significance of the in-depth knowledge of both FDM
and FEM toward an ultimate unification of computational fluid dynamics strategies in
general. A thorough study of all available methods without bias will lead to this goal.

Preliminaries begin in Chapter 1 with an introduction of the basic concepts of all
CFD methods (FDM, FEM, and FVM). These concepts are applied to solve simple
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one-dimensional problems. It is shown that all methods lead to identical results. In this
process, it is intended that the beginner can follow every step of the solution with simple
hand calculations. Being aware that the basic principles are straightforward, the reader
may be adequately prepared and encouraged to explore further developments in the
rest of the book for more complicated problems.

Chapter 2 examines the governing equations with boundary and initial conditions
which are encountered in general. Specific forms of governing equations and boundary
and initial conditions for various fluid dynamics problems will be discussed later in
appropriate chapters.

Part Two covers FDM, beginning with Chapter 3 for derivations of finite difference
equations. Simple methods are followed by general methods for higher order derivatives
and other special cases.

Finite difference schemes and solution methods for elliptic, parabolic, and hyper-
bolic equations, and the Burgers’ equation are discussed in Chapter 4. Most of the basic
finite difference strategies are covered through simple applications.

Chapter 5 presents finite difference solutions of incompressible flows. Artificial com-
pressibility methods (ACM), SIMPLE, PISO, MAC, vortex methods, and coordinate
transformations for arbitrary geometries are elaborated in this chapter.

In Chapter 6, various solution schemes for compressible flows are presented. Poten-
tial equations, Euler equations, and the Navier-Stokes system of equations are included.
Central schemes, first order and second order upwind schemes, the total variation dimin-
ishing (TVD) methods, preconditioning process for all speed flows, and the flowfield-
dependent variation (FDV) methods are discussed in this chapter.

Finite volume methods (FVM) using finite difference schemes are presented in
Chapter 7. Node-centered and cell-centered schemes are elaborated, and applications
using FDV methods are also included.

Part Three begins with Chapter 8, in which basic concepts for the finite element
theory are reviewed, including the definitions of errors as used in the finite element
analysis. Chapter 9 provides discussion of finite element interpolation functions.

Applications to linear and nonlinear problems are presented in Chapter 10 and
Chapter 11, respectively. Standard Galerkin methods (SGM), generalized Galerkin
methods (GGM), Taylor-Galerkin methods (TGM), and generalized Petrov-Galerkin
(GPG) methods are discussed in these chapters.

Finite element formulations for incompressible and compressible flows are treated in
Chapter 12 and Chapter 13, respectively. Although there are considerable differences
between FDM and FEM in dealing with incompressible and compresible flows, it is
shown that the new concept of flowfield-dependent variation (FDV) methods is capable
of relating both FDM and FEM closely together.

In Chapter 14, we discuss computational methods other than the Galerkin methods.
Spectral element methods (SEM), least squares methods (LSM), and finite point meth-
ods (FPM, also known as meshless methods or element-free Galerkin), are presented
in this chapter. Chapter 15 discusses finite volume methods with finite elements used as
a basic structure.

Finally, the overall comparison between FDM and FEM is presented in Chapter 16,
wherein analogies and differences between the two methods are detailed. Furthermore,
a general formulation of CFD schemes by means of the flowfield-dependent variation
(FDV) algorithm is shown to lead to most all existing computational schemes in FDM
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and FEM as special cases. Brief descriptions of available methods other than FDM,
FEM, and FVM such as boundary element methods (BEM), particle-in-cell (PIC) meth-
ods, Monte Carlo methods (MCM) are also given in this chapter.

Part Four begins with structured grid generation in Chapter 17, followed by unstruc-
tured grid generation in Chapter 18. Subsequently, adaptive methods with structured
grids and unstructured grids are treated in Chapter 19. Various computing techniques,
including domain decomposition, multigrid methods, and parallel processing, are given
in Chapter 20.

Applications of numerical schemes suitable for various physical phenomena are
discussed in Part Five (Chapters 21 through 27). They include turbulence, chemically
reacting flows and combustion, acoustics, combined mode radiative heat transfer, mul-
tiphase flows, electromagnetic flows, and relativistic astrophysical flows.

1.2 ONE-DIMENSIONAL COMPUTATIONS BY FINITE DIFFERENCE METHODS

In this and the following sections of this chapter, the beginner is invited to examine
the simplest version of the introduction of FDM, FEM, FVM via FDM, and FVM via
FEM, with hands-on exercise problems. Hopefully, this will be a sufficient motivation
to continue with the rest of this book.

In finite difference methods (FDM), derivatives in the governing equations are
written in finite difference forms. To illustrate, let us consider the second-order, one-
dimensional linear differential equation,

d2u
dx2

− 2 = 0 0 < x < 1 (1.2.1a)

with the Dirichlet boundary conditions (values of the variable u specified at the bound-
aries),{

u = 0 at x = 0
u = 0 at x = 1

(1.2.1b)

for which the exact solution is u = x2 − x.
It should be noted that a simple differential equation in one-dimensional space with

simple boundary conditions such as in this case possesses a smooth analytical solution.
Then, all numerical methods (FDM, FEM, and FVM) will lead to the exact solution
even with a coarse mesh. We shall examine that this is true for this example problem.

The finite difference equations for du/dx and d2u/dx2 are written as (Figure 1.2.1)(
du
dx

)
i
≈ ui+1 − ui

�x
forward difference (1.2.2a)

(
du
dx

)
i
≈ ui − ui−1

�x
backward difference (1.2.2b)(

du
dx

)
i
≈ ui+1 − ui−1

2�x
central difference (1.2.2c)
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dx

(
du
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)
∼= 1
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)
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(
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)
i

]
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�x

)
(1.2.3)
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Figure 1.2.1 Finite difference approximations.

Substitute (1.2.3) into (1.2.1a) and use three grid points to obtain

ui+1 − 2ui + ui−1

�x2
= 2 (1.2.4)

With ui−1 = 0, ui+1 = 0, as specified by the given boundary conditions, the solution at
x = 1/2 with �x = 1/2 becomes ui = −1/4. This is the same as the exact solution given
by

ui = (x2 − x)x= 1
2

= −1
4

(1.2.5)

In what follows, we shall demonstrate that the same exact solution is obtained, using
other methods: FEM and FVM.

1.3 ONE-DIMENSIONAL COMPUTATIONS BY FINITE ELEMENT METHODS

For illustration, let us consider a one-dimensional domain as depicted in Figure 1.3.1a.
Let the domain be divided into subdomains; say two local elements (e = 1, 2) in this
example as shown in Figure 1.3.1b,c. The end points of elements are called nodes.
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Figure 1.3.1 Finite element discretization for one-dimensional linear problem with two local el-
ements. (a) Given domain (�) with boundaries (�1(x = 0), �2(x = 1)). (b) Global nodes (�, � = 1,
2, 3). (c) Local elements (N, M = 1, 2). (d) Local trial functions.


