Modelling Financial Derivatives with Mathematica
Mathematical Models and Benchmark Algorithms

WILLIAM T. SHAW
Quantitative Analysis Group
Nomura International plc, London
and Balliol College, Oxford
for
Susan Mary Wallace
[1946–1997]
and
Sarah-Jane
Contents

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Tools for Rocket Science</td>
</tr>
<tr>
<td>2</td>
<td>An Introduction to Mathematica</td>
</tr>
<tr>
<td>3</td>
<td>Mathematical Finance Preliminaries</td>
</tr>
<tr>
<td>4</td>
<td>Mathematical Preliminaries</td>
</tr>
<tr>
<td>5</td>
<td>Log and Power Contracts</td>
</tr>
<tr>
<td>6</td>
<td>Binary Options and the Normal Distribution</td>
</tr>
<tr>
<td>7</td>
<td>Vanilla European Calls and Puts</td>
</tr>
<tr>
<td>8</td>
<td>Barrier Options - a Case Study in Rapid Development</td>
</tr>
<tr>
<td>9</td>
<td>Analytical Models of Lookbacks</td>
</tr>
<tr>
<td>10</td>
<td>Vanilla Asian Options - Analytical Methods</td>
</tr>
<tr>
<td>11</td>
<td>Vanilla American Options - Analytical Methods</td>
</tr>
<tr>
<td>12</td>
<td>Double Barrier, Compound, Quanto Options and Other Exotics</td>
</tr>
<tr>
<td>13</td>
<td>The Discipline of the Greeks and Overview of Finite-Difference Schemes</td>
</tr>
<tr>
<td>14</td>
<td>Finite-Difference Schemes for the Diffusion Equation with Smooth Initial Conditions</td>
</tr>
<tr>
<td>15</td>
<td>Finite-Difference Schemes for the Black-Scholes Equation with Non-smooth Payoff Initial Conditions</td>
</tr>
<tr>
<td>16</td>
<td>SOR and PSOR Schemes for the Three-Time-Level Douglas Scheme and Application to American Options</td>
</tr>
<tr>
<td>17</td>
<td>Linear Programming Alternatives to PSOR and Regression</td>
</tr>
<tr>
<td>18</td>
<td>Traditional and Supersymmetric Trees</td>
</tr>
<tr>
<td>19</td>
<td>Tree Implementation in Mathematica and Basic Tree Pathology</td>
</tr>
<tr>
<td>20</td>
<td>Turbo-charged Trees with the Mathematica Compiler</td>
</tr>
<tr>
<td>21</td>
<td>Monte Carlo and Wozniakowski Sampling</td>
</tr>
<tr>
<td>22</td>
<td>Basic Applications of Monte Carlo</td>
</tr>
<tr>
<td>23</td>
<td>Monte Carlo Simulation of Basket Options</td>
</tr>
<tr>
<td>24</td>
<td>Getting Jumpy over Dividends</td>
</tr>
<tr>
<td>25</td>
<td>Simple Deterministic and Stochastic Interest-Rate Models</td>
</tr>
<tr>
<td>26</td>
<td>Building Yield Curves from Market Data</td>
</tr>
<tr>
<td>27</td>
<td>Simple Interest Rate Options</td>
</tr>
<tr>
<td>28</td>
<td>Modelling Volatility by Elasticity</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>534</td>
</tr>
</tbody>
</table>
Preface

This text has a number of aims. The first is to show how Mathematica (version 3 in particular), can be used as a derivatives modelling tool. Second, it presents a complete if concise development of the mathematical approach to the valuation and hedging of a large class of derivative securities. Third, although the basic mathematical development is oriented towards dynamic hedging and partial differential equations, this book aims to present a balanced approach to algorithm development, in which analytical, finite-difference, tree and Monte Carlo methods are each applied in the appropriate context, without any forced adherence to any particular method. Fourth, it is intended that this text collects together and highlights many of the mathematical pathologies that exist in derivatives modelling problems. This last point is all too frequently ignored, so a discussion here may be appropriate.

Financial analysts use often-complex mathematical models to guide their decisions when trading derivative financial instruments. However, derivative securities are capable of exhibiting some diverse forms of mathematical pathology that confound our intuition and play havoc with standard or even state-of-the-art algorithms. The potential traps fall into two categories. The first category contains problems arising from the complexity of some models, leading to their being seriously error-prone in their implementation, even if not intrinsically flawed. The second category contains algorithms that are intrinsically flawed. Let’s take a look at some problems in each category.

An obvious example of a type-one problem relates to the computation of hedge parameters, or “Greeks.” These are the partial derivatives of the option value with respect to the underlying price and other variables such as time and interest rates. For all but the simplest vanilla options, the pen-and-paper computation of such entities is very complex and therefore error-prone, leading to the potential of errors in coding. The estimation of such quantities by purely numerical methods (differencing) leads to other types of problems associated with inaccuracies in the estimate of the analytical derivative. Such difficulties can often be eliminated in one swoop with the Mathematica system, which is able to compute the symbolic derivatives – and hence the hedge parameters – exactly by analytical differentiation of the option-pricing formula.

A more subtle type-one difficulty relates to the computation of implied volatility, which is a favourite parameter of traders. Implied volatility makes sense only for the simplest vanilla options. In other cases, the implied volatility may be unstable, double-valued, or triple-valued, or may even possess infinitely many values. The implementation must check that the price is a strictly increasing or a strictly decreasing function of volatility; otherwise, nonsense can and will be obtained for the implied volatility. In Mathematica the graphical tools can be used to test this very quickly.

Some quite well-known algorithms are intrinsically flawed. Problems which we might identify as a type-two issue can be found in the following models.
(i) Binomial models
(ii) Implicit finite-difference models
(iii) Monte Carlo simulation models

These are essentially numerical methods, and this book looks in detail at them in comparison with exact solutions for known cases. This is straightforward in a system such as Mathematica, where complex, exact solutions can be expressed exactly and worked out to any degree of precision. As numerical methods, they involve an essential discretization of time and other relevant variables such as the underlying asset price. A common theme is what happens when the time-step is taken to be large, which is very tempting in an implementation in order to obtain results quickly.

For example, several of the standard binomial models suffer from the well-known difficulty that as the time-step becomes large, the probabilities associated with the underlying tree model may become negative, which is manifest nonsense. In other types of models, the asset prices can become negative. Both of these effects are well known. What appears not to be understood is that the reason for these difficulties has a common root in the fact that tree models are typically underspecified from a mathematical point of view. A number of constraints can be written down that should apply to a tree. The solution of a full set can be quite hard, so in practice the authors of tree models have worked with a subset and made up one or more missing conditions in order to solve for the tree structure. This leads to the problems with negative probabilities or negative asset prices. When one is armed with Mathematica's symbolic equation-solving capabilities, the solution of a full set of tree constraints is a straightforward matter — and in fact leads to a model where neither the up-and-down tree probabilities nor the asset price can become negative. Other problems with trees, discovered by others in relation to barrier and cap effects, are also discussed.

One of the most surprising and deeply rooted difficulties relates to the use of implicit finite-difference schemes. In principle, these allow a larger numerical time-step to be used than in treelike models and are becoming increasingly popular. When properly used, they combine accuracy with efficiency. There is, however, a major difficulty with them that appears not to have fully migrated in its appreciation from the academic numerical analysis community to the market practitioners. When the initial conditions for the associated partial differential equation (in financial terms, the option payoff) are nice and smooth (in loose terms, continuous with continuous slopes), one can get away with almost any implicit finite-difference scheme. This is emphatically not the case in option-pricing problems, where the payoffs are typically non-smooth and frequently discontinuous. Such “glitches” in the payoff will propagate through the solution, and while they do not necessarily cause a large error in the option value, they can cause significant errors in the Greeks such as Delta, Gamma, and Theta. This will occur with some of the most common schemes in current use for larger time-steps. It can be avoided only with a certain subset of implicit schemes. Which subset works and which does not is in fact well known to the numerical analysis community. In the text this is made crystal clear by comparison with some exact solutions; and the good, but infrequently used, schemes are contrasted with the bad, but widely used, schemes.

Monte Carlo simulation is a popular method for the valuation of options that are European in style but path-dependent. The manner in which simulated solutions converge to the correct answer is investigated for some cases where the exact solution is known. This reveals several difficulties with such numerical simulation methods, and in particular the very slow convergence associated with certain classes of options. We give suggestions for control variates in a number of useful cases but highlight the difference between getting the variance down — but possibly converging to the wrong answer — and getting the right answer.
However, it would be wrong to assume that the purpose of writing this book was merely to discuss what can go wrong! The illumination of pathology is only one of the abilities of Mathematica. For example, in addition to being able to do calculus, Mathematica has other advantages over traditional modelling environments such as spreadsheets and C/C++. For example, the presence of a vast library of special functions, coupled with the ability to do differentiation and integration, means that novel, exact solutions can be implemented with ease. A beautiful example of this is the exact solution for the Asian option with arithmetic averaging, which requires that one invert the Laplace transform of a hypergeometric function. This requires just a few lines in Mathematica and can be directly differentiated to obtain the Greeks. Other areas in which Mathematica can be fruitfully applied include novel analytical techniques for double-Barrier options and accurate analytical approximations for American options.

How the Text is Organized

This book is divided into six groups of chapters. The first group establishes the preliminaries in terms of the use of Mathematica, the basics of stochastic calculus and the derivation of partial differential equations, and the basic technique for solving the Black-Scholes PDE family. The next group of chapters explores a wide variety of analytical models, from simple vanilla options, through a range of by-now standard “exotics”, and also develops more complex analytical models for Asian and American options. Next we take a long hard look at the finite-difference models, including the standard approaches and also novel methods with much better numerical characteristics. This block makes particularly good use of the new features of Mathematica 3.0, and it is shown how to use the Mathematica compiler to build numerical solutions of the PDEs in an efficient manner.

The fourth group of chapters explores the fundamentals and implementation aspects of binomial and trinomial tree models, using Mathematica both to define new tree models, and to implement traditional and novel tree models using the compiler. Group five looks in detail at Monte Carlo simulation and applications in particular to path-dependent and Basket options. Finally we take a brief look at some simpler interest-rate models and related non-log-normal equity models.

Some History

The origins of this text are diverse. Many years ago I began running courses for modelling professionals under the auspices of my consulting firm, Oxford System Solutions. Inspired by Ross Miller’s work in The Mathematica Journal, I began to look at developing a programme tailored to financial applications, and gave it to several London financial organizations. This course focused largely on the analytical aspects – the limited compilation features of version 2.0 of Mathematica did not then allow complex numerical models to be developed in an efficient fashion. Later, when employed as a consultant to Nomura Research Institute Europe Ltd., the question of how to carefully test the integrity of the models then being employed by Nomura arose. Although the existing models had been developed and tested with considerable care, I proposed that a systematic sweep through all the existing models be done, using Mathematica to independently build all the models, using the basic published mathematical research as a starting point. Furthermore, with one eye on the features of the then forthcoming Mathematica 3.0, I realized that one could begin to use Mathematica to perform detailed numerical computation, so that the project need not be limited to the simpler models admitting exact solutions. The project scope was then expanded not just to include the existing in-house models, but to explore numerous other models in the literature, with a view to assessing the desirability of their implementation. That extended project led to this text, and continues move to forward now that I am on the staff of Nomura International plc, and involved in the specification, prototyping and testing of a wide range of derivative models.
Technology Aspects

The chapters of this book exist in their entirety as a collection of Mathematica 3 Notebooks. All chapter material, including Mathematica code, text, graphics and typeset mathematical material, is native to Mathematica 3. The front- and end-matter (this preface, contents and index etc.) were prepared in LaTeX using Textures 1.8. The book was produced in final form on Power Macintoshes, in the form of an 8500/120 upgraded with a 266 MHz G3, and a further G3/266, with Notebooks being printed to disk as PostScript files, which were then used by the publisher to produce the final printed version. Timing results are based on the G3/266, running Mathematica 3.0.0, which in general is slightly faster on average than a Pentium II at 300 MHz running NT4 (if you are a Windows user make sure that you are using Mathematica 3.01 or later, because that version is fully Pentium optimized, and note that NT is significantly more efficient than '95). The timings should therefore be typical of desktop computers in production at the intended publication date of mid-1998. The printed version made use of a few features of the 3.1 or 3.5 system with regard to page layout only. The kernel code is targeted at Mathematica 3, though most of the non-compiled material is V2.X friendly. Work in progress in the numerical optimization of future versions of Mathematica may modify some of the conclusions regarding numerical efficiency issues.

Accuracy and Errors

In a project of this size and scope it is impossible to guarantee the absolute correctness of all the material and its implementation. I have made significant efforts to check the models contained herein against basic research results and other model implementations, but can make no guarantees regarding these implementations. I have prepared this material both for its educational value, and to provide a set of implementations of valuation models for comparison with other systems. This material should emphatically not be used in isolation for pricing and hedging in real-world applications (see the disclaimer also). Note also that some of the algorithms are highly experimental. Furthermore, it should be noted that all results printed here are those obtained on Apple Power Macintosh systems. A substantial number of the calculations (but not necessarily all) have been re-run on Intel Pentium systems running Microsoft Windows 95 and NT4, and on various UNIX systems from SUN, and have been found to give identical results. However, the author cannot guarantee complete hardware independence. Wolfram Research Inc. make their own best efforts to ensure that the Mathematica system operates in a consistent fashion, but there are inevitable minor differences, usually when machine-precision arithmetic is employed.

Stylistic Issues

The coding contained herein is for the most part based on my own efforts, except as explicitly acknowledged within the text. My efforts have focused on accuracy and speed, and I have deemed elegance and compactness to be secondary to transparency of function. In financial applications, for checking purposes, transparency of function is critical, and I hope the code contained here is legible and easy to understand and check. I make no apologies for allegedly ugly code! All that matters to me is getting an accurate answer and getting it efficiently.

Typesetting Issues

Mathematica 3.0 and later versions have a variety of styles for the display of Mathematica code and mathematical equations. Except in the early tutorial chapters of this book, where consistency has been
the goal in order to avoid confusing the reader, I have been fairly liberal in switching between styles, where it appears to be useful to select a particular style for displaying material. Most *Mathematica* input uses the old version 2.X input form that is pure text, but occasionally, in order, for example, to make it easier to compare input with published research, I have converted input cells to “Standard Form” so that they look more like ordinary mathematics. Similarly, most of the output is in Standard Form, but occasionally it has been converted to “Traditional Form” so that it looks *exactly* like ordinary mathematical notation. Some of the Traditional Form outputs have in addition been typeset as numbered equations. Where there is mathematical material without any related *Mathematica* input or output it is almost all Traditional Form, usually created from Input Form, styled as numbered equations.

One notational point needs to be made here. Mathematica 3 Traditional Form uses a partially double-struck font for symbols such as i and e, and for the d in dS in integrals. I have avoided using this when creating my own equations, e.g. in the stochastic calculus material, but equations that are converted Mathematica output use the default typefaces employed by the software system. Typographical purists may dislike this notation, but I have tried to avoid editing Mathematica-created output wherever possible, in order that “what you see is what Mathematica made” or, as we shall remark quickly in the text to remind the reader that something strange and unfamiliar may be about to appear: “WYSIWWMAMA”.

One decision on presentation was to suppress all the “In” and “Out” numbered statements. This has the benefit of tidyness, but also has the potential for confusion as to what is input and what is output. In the printed form, I have used indentation on most of the outputs to try to indicate their character, but if there is any confusion as to the types or styles of cells, this can be resolved by reference to the electronic form.

Conventions

There are many different issues of convention that plague this subject. For example, how should *Delta* be quoted? We could quote the raw partial derivative; the same expressed as a percentage; the same expressed in terms of a one per cent change in the underlying, and so on. The following are the rules, except as explicitly stated in the text:

- All variables are in natural units:
 - the interest-rate and continuous dividend yield are continuously compounded, and expressed in absolute terms, i.e., an interest-rate of 10 per cent continuously compounded corresponds to $r = 0.10$;
 - the time is in years;
 - the volatility is in absolute annual terms, and will normally (but not always) be a number less than unity, so that $\sigma = 0.25$ corresponds to 25 per cent annualized volatility;
- All Greeks are based on the raw partial derivatives with respect to absolute quantities in natural units, so that, e.g.,
 - *Delta* corresponds to the instantaneous rate of change of option value with respect to the underlying price, with the latter expressed in currency terms – for a vanilla Call *Delta* lies between zero and one;
 - *Rho* is rate of change with respect to absolute continuously compounded interest rates;
 - *Vega* is rate of change with respect to absolute volatility;
 - *Theta* is rate of change with respect to time in years.
These are most convenient for the mathematical description, as it means there are very few occurrences of factors of 100, 365, 1/365 and so on. In making comparisons with your own on-desk systems, this may require various conversion factors to be applied. Note that if you have numerical differencing algorithms in place, you may have made a choice to calculate actual changes rather than rates of change.

Feedback

Comments are actively sought on this material, especially if material errors are discovered. I also wish to hear about how things could have been done better, particularly with regard to speed and/or accuracy. I am not representing this text as necessarily the best way of implementing models in Mathematica, and have not doubt that many others will be able to improve on the material here.

Feedback to: william.shaw@nomura.co.uk

All trademarks are acknowledged.

Acknowledgements

I have to begin this list by apologizing to anyone I leave out. Over the past few years, I have had numerous discussions with many colleagues inside and outside Nomura regarding the use of Mathematica in both financial and non-financial applications, and I am not going to be able to remember everybody! I will therefore keep this list short. Within the Quantitative Analysis Group in London, my special thanks go to Reza Ghassemieh for his unflagging support throughout the project and to Roger Wilson for helping to solve numerous implementation problems. In the derivatives team, I have to acknowledge the infinite patience of David Kelly, Ben Mohamed and Dominic Pang, for their diverse contributions in the various testing and prototyping phases of the project. Marta Garcia has consistently brought me down to earth with reminders of the complex real world of convertibles and of the limitations of mathematics (and mathematicians). A special thanks goes to James Hutton, for many useful discussions on general points, and for making available early copies of the research on LP methods. Numerous members of the Risk Management teams have provided valuable feedback on model test reports that formed the basis for early drafts of this work. Valuable comments on draft chapters at various stages of development have been received from colleagues inside and outside Nomura, including: Martin Baxter, Ian Buckley, Asif Khan, Jason Tigg, Rachel Pownall, Hideki Shimamoto and my anonymous reviewers. My relatively recent education in finance has benefited from countless discussions with other colleagues at Nomura, and Nick Knight and Allison Southey deserve a special mention, along with numerous past and present members of the equity and strategy teams.

At Wolfram research in the US and the UK, Stephen Wolfram, Conrad Wolfram, Magnus Germandson, Theodore Gray, Rachel Leaver, Claire Miller, Tom Wickham-Jones and many others have provided a mixture of support including enthusiastic noises, organizing presentations, fixing my page layout headaches, fixing my code, and telling bad jokes to warm up my audience before presentations on aspects of this material.

With regard to the book production aspects, David Tranah and the Cambridge University Press team displayed chronic enthusiasm and tolerance.

While this book was being edited for final production, I learnt of the sudden death of my eldest sister Susan. This book is dedicated to her memory and to my niece Sarah-Jane.
Index

Note: this is not a comprehensive index of Mathematica commands built in to Mathematica – see The Mathematica Book also.

=, 22
==, 22
:= and = compared, 56
; and output suppression, 35
/. and temporary substitution, 40
? and getting help, 48
and pure functions, 53

algebra, commands for, 36
algorithmic risk, 2
affine bond models, 474
American options,
 analytical approximations for puts, 218, 222
 analytical model for calls, 229
 boundary conditions for puts, 216
 finite-difference models for, 306
 linear programming approach, 331
 package for, 233
approximate numbers, 20
Asian options,
 payoff types, 201
 analytical models in Mathematica, 202-214
 arithmetic, continuous and approximate, 203
 arithmetic, continuous and exact, 206
 control variates for, 432
 geometric, continuous and exact, 201
 geometric, discrete and exact, 201
 Laplace transforms and, 206
 Monte Carlo simulation of, 422, 427
 as you like it options, 254

barrier options,
 derivation of formulae, 112
 and implied volatility, 8
double, 237

Greens for, 170-182
Mathematica model of, 168-188
basked options,
 analysis of two-asset case, 446
 arithmetic, defined, 437
 arithmetic log-normal model, analysis, 451
 arithmetic log-normal model implementation, 443
gometric, as control variate, 441
 random sampling for, 438
 spread variant, 446
 binary options,
 derivation of solution, 111
 Greeks for, 138
 hedging issues, 140
 Mathematica model of, 137
Black model of interest rate options,
 and Vasicek world bond options, 508
generalities, 505
 swaptions in, 506
 Black-Scholes formula,
 and implied volatility, 6
 for calls and puts, 112
 implementation in Mathematica, 152
 Black-Scholes PDE,
 CEV form, 517
derivation, 70
 FD numerical solution in Mathematica, 279
 for composite option, 73
 for convertible bonds, 71, 122
 for general foreign underlying, 73
 for path-dependency, 81
 for quanto option, 79
 European solution from given payoff, 107
 reduction to diffusion equation, 91

similarity solutions of, 94
 simple solutions of, 85
 steady-state solutions of, 89
 binomial,
 and finite-difference, 263
trees, see trees
bonds,
 log-linear pricing models, 474
 PDE with known interest rates, 471
 price in Cox-Ingersoll-Ross world, 477
 price in Hull-White world, 479
 price in Vasicek world, 476
 related to yield curve, 472
 bootstrapping, for yield curve, 495
 brackets, 16

C & C++, issues with, 4
calculus, functions for, 41
 and Greens, 3
call options,
 CEV pricing of, 520-527
derivation of solution, 112
 Greens for, 154
 implied volatility for, 159
 Mathematica model of, 152
 with barriers, 170, 174
cells, opening and closing, 15
CEV models,
 approximate option formulae, 524
call option valuation in, 520-527
definition, 516
diffusion equation analogue, 519
 fast evaluation, 522
 Green's function for, 519
 PDE for, 517
 put option valuation in, 530
 relation to Cox-Ingersoll-Ross model, 516
 skew in, 527
Index

chooser options, 254
clearing definitions, 33
Clear, 33
Coefficient, 40
Collect, 39
compilation,
 Compile and explicit FD methods, 268
 Compile and PSOR, 309
 Compile and SOR, 308
 Compile and trees, 388-398
 Compile and tridiagonal solver, 270
complex numbers, 46
composite options, 79
compound options, 243
constant elasticity of variance, see CEV
countrol variates,
 for Asian options, 432
 for basket, 441
 convertible bonds, PDE for, 71
coupons, basic management, 122
Cox-Ross-Rubenstein, see trees
covariance,
 Mathematica implementation, 438
 multivariate simulation and, 450
 role in basket modelling, 451
Cox-Ingersoll-Ross interest rate model,
 bond option price in, 513
 bond price in, 477
 distribution properties, 509-513
 random walk defined, 473
 relationship to CEV model, 516
Crank-Nicholson,
 numerical scheme defined, 262
 solution of diffusion equation, 273
 solution of Black-Scholes PDE for Put, 287
 problems with Greeks for European options, 294-295
D, differentiation operator, 41
data,
 controlling large data sets, 35
 interpolating, 483
 list structures for, 27
delta,
 defined, 81
 linked to rho, 83
diffusion equation,
 and method of images, 99
 CEV variant, 519
 derived for convertible bonds, 122
 derived from Black-Scholes equation, 91
 Green's function for, 95
 solution given initial conditions, 98
 dilution and warrants, 252
discount factors, see CEV
 discrete, and jump-conditions, 122
discrete, in Black-Scholes PDE, 122
discrete, in Monte Carlo analysis, 455
dividends,
 analytical models for, 457, 464
double barrier options, 237
Douglas,
 applied to American options, 308-330
 applied to diffusion equation, 275
two time level scheme defined, 262
declared for European PDE, 280
three time level scheme defined, 280
three time level applied to European Put, 295
behaviour of Greeks for European options, 301-304
D Solve, symbolic ODE solver, 44
delta,
 defined, 81
 linked to rho, 83
diffusion equation,
 and method of images, 99
 CEV variant, 519
 derived for convertible bonds, 122
 derived from Black-Scholes equation, 91
 Green's function for, 95
 solution given initial conditions, 98
 dilution and warrants, 252
discount factors, see CEV
 discrete, and jump-conditions, 122
discrete, in Black-Scholes PDE, 122
discrete, in Monte Carlo analysis, 455
dividends,
 analytical models for, 457, 464
double barrier options, 237
Douglas,
 applied to American options, 308-330
 applied to diffusion equation, 275
two time level scheme defined, 262
declared for European PDE, 280
three time level scheme defined, 280
three time level applied to European Put, 295
behaviour of Greeks for European options, 301-304
DSolve, symbolic ODE solver, 44
delta,
 defined, 81
 linked to rho, 83
diffusion equation,
bond price in, 479
random walk defined, 473
images, method of, and diffusion equation, 99
barrier option details, 112
impedance boundary condition and diffusion equation, 103
financial analogue of, 117
implied volatility, CEV analysis, 527
issues with, for calls, puts, 159
input, 12
Input Form, 16
integration, symbolic, 41
numerical, 43
interest rate models, Black, 506-508
Black-Derman-Toy, 474
Black-Karasinski, 474
Cox-Ingersoll-Ross, 473, 477, 509, 513, 516
Ho-Lee, 473
Hull-White, 473, 479
one-factor model families, 473
options, generalities, 504
options, in the Black world, 505
lookback options, analytical Mathematica model of, 127
Monte Carlo simulation of, 421, 424
matrices, 29
MatrixForm, 29
mean reversion, for interest rates, 473
model risk, 2
Monte Carlo modelling, Asian options, 422, 427
European options re-visited, 413
hedge parameter computation in, 414
lookback options, 421, 424
multivariate analysis, 450
multivariate simulation, 438
paths, fine clockwork, 407
paths, coarse clockwork, 411
paths, coarse irregularly-spaced, 412
N, numerical evaluation, 19
NSolve, numerical ODE solver, 45
Nest, 33
NestList, 33
Newton-Raphson, 27
Norm definition, 141
normal distribution, continued fractions for, 148
relation to Erf, 141
Monte Carlo sampling series for, 147
traditional approximations for, 142
NSolve, numerical solver, 26
NIntegrate, defined, 43
applied to two-asset options, 447
numerical methods, see finite-differences, trees, Monte Carlo, SOR, PSOR, NDSolve, NSolve, NIntegrate etc.
object oriented programming, 4
ODE, solution of, 44-45
OOP, 4
option prices, basic derivations, 107
types, see e.g. calls, puts and names in general.
ordinary differential equations symbolic solution 44
numerical solution 45
Options, 49
packages
basic use, 59
American options, 233
European options, 162
FourierTransform, 59
LaplaceTransform, 96
partial differential equations, see Black-Scholes PDE
Partition, 31
path-dependent options, PDE for, 81
Monte Carlo sampling, see Monte Carlo
see also Asian, lookback options
PDE, see Black-Scholes PDE
pure functions, 53
Plot, introduced 17
plotting, colours and, 60
legends and, 61
several functions, 60
several data sets, 63
functions of many variables, 65
movies, 67
POO, see OOP
power options, from Black-Scholes PDE, 92
Greens for, 134
implied volatility for, 135
Mathematica model of, 133
probability functions, log-normal, 108
Index

non-central chi-squared, 509
normal, see normal distribution
put options,
 CEV model of, 530
derivation of solution, 112
Greens for, 154
implied volatility for, 159
Mathematica model of, 152
with barriers, 178, 180

projected successive over-relaxation, see PSOR

compiled solver for, 309
alternatives to, using linear programming, 331

Quanto options,
 PDE derivation, 79
Greens for, 250
Mathematica model of, 249

rebates,
 PDE basics, 101
calculated for barrier options, 114
recursion, 55
regression,
 least squares, see Fit robust, 340
rho,
defined, 82
link to delta, 83
risk-neutrality and dynamic hedging, 70

Series function, 44
simulation, see Monte Carlo skew, for volatility in CEV models, 527

Solve function, 21
SOR, 307
speed, improving, see compilation
spread, two asset option, 446

spreadsheets, issues with, 4

SRCEV, see CEV

Standard Form, 16
stochastic process, naive view, 69
substitutions,
 permanent, 40
temporary, 40
successive over-relaxation, see SOR
supersymmetric, see trees swaps,
 use in yield curve construction, 487

options on, 506
swaptions, Black model, 506

Together, 37
Traditional Form, 16 transforms,
 Fourier, package for, 59
Laplace, see Laplace transforms
trees,
 barriers, nasty behaviour of, 381
binomial Cox-Ross-Rubenstein, compiled implementation, 387
binomial Cox-Ross-Rubenstein, convergence analysis, 367
binomial Cox-Ross-Rubenstein, magic tree sizes, 367
binomial Cox-Ross-Rubenstein, recursive implementation, 364
binomial Cox-Ross-Rubenstein style defined, 348
binomial Jarrow-Rudd, convergence analysis, 373
binomial Jarrow-Rudd, magic tree sizes, 374
binomial Jarrow-Rudd, recursive implementation, 371
binomial Jarrow-Rudd style defined, 347
binomial supersymmetric, convergence analysis, 377
binomial supersymmetric, magic tree sizes, 379
binomial supersymmetric, recursive implementation, 375
binomial supersymmetric style defined, 350
general specification, 344
Mathematica solution of binomial constraint equations, 354
relation to finite-differences, 263
trinomial supersymmetric, compiled implementation, 396
trinomial supersymmetric, Mathematica solution of constraints, 356
trinomial supersymmetric style defined, 356
tridiagonal equations,
 compiled solver for, 270
solution of implicit FD schemes using, 271

up and in options, calls, 170
puts, 178
up and out options, calls, 174
puts, 180

vanilla option, see call, put option
Vasicek interest rate model, bond option pricing, 508
bond price in, 476
random walk defined, 473
vega,
defined, 82
link to gamma, 82
verification,
in general, 2
of FD schemes for European Put, 281
of tree schemes, 367, 373, 377
volatility,
 approaches to, 515
 CEV model of, 516
 implied, see implied volatility
 implied for named options, see e.g. call options, implied volatility
 introduction as random walk parameter, 69

warrant pricing
 and implied volatility, 7
Greens for, 253
Mathematica model of, 252
Wozniakowski integration, 416

yield curve,
 bonds and, 472
bootstrapping algorithm for, 495
construction from market data, 487
forward rate computation and, 499

zero-coupon bonds,
 and yield curve, 472
options on, 508, 513