SOLAR SYSTEM DYNAMICS

CARL D. MURRAY
Queen Mary and Westfield College,
University of London

STANLEY F. DERMOTT
University of Florida, Gainesville
Contents

Preface

1 **Structure of the Solar System**
1.1 Introduction
1.2 The Belief in Number
1.3 Kepler’s Laws of Planetary Motion
1.4 Newton’s Universal Law of Gravitation
1.5 The Titius–Bode “Law”
1.6 Resonance in the Solar System
1.7 The Preference for Commensurability
1.8 Recent Developments
Exercise Questions

2 **The Two-Body Problem**
2.1 Introduction
2.2 Equations of Motion
2.3 Orbital Position and Velocity
2.4 The Mean and Eccentric Anomalies
2.5 Elliptic Expansions
2.6 The Guiding Centre Approximation
2.7 Barycentric Orbits
2.8 The Orbit in Space
2.9 Perturbed Orbits
2.10 Hamiltonian Formulation
Exercise Questions

3 **The Restricted Three-Body Problem**
3.1 Introduction
3.2 Equations of Motion
3.3 The Jacobi Integral
3.4 The Tisserand Relation 71
3.5 Lagrangian Equilibrium Points 74
3.6 Location of Equilibrium Points 77
3.7 Stability of Equilibrium Points 83
3.8 Motion near L_4 and L_5 95
3.9 Tadpole and Horseshoe Orbits 97
3.10 Orbits and Zero-Velocity Curves 102
3.11 Trojan Asteroids and Satellites 107
3.12 Janus and Epimetheus 110
3.13 Hill’s Equations 115
3.14 The Effects of Drag 121
Exercise Questions 128

4 Tides, Rotation, and Shape 130
4.1 Introduction 130
4.2 The Tidal Bulge 131
4.3 Potential Theory 136
4.4 Tidal Deformation 140
4.5 Rotational Deformation 149
4.6 The Darwin–Radau Relation 153
4.7 Shapes and Internal Structures of Satellites 155
4.8 The Roche Zone 158
4.9 Tidal Torques 160
4.10 Satellite Tides 166
4.11 Tidal Heating of Io 174
4.12 Tides on Titan 175
4.13 Tidal Evolution 178
4.14 The Double Synchronous State 183
Exercise Questions 186

5 Spin–Orbit Coupling 189
5.1 Introduction 189
5.2 Tidal Despinning 189
5.3 The Permanent Quadrupole Moment 194
5.4 Spin–Orbit Resonance 200
5.5 Capture into Resonance 210
5.6 Forced Librations 215
5.7 Surface of Section 217
Exercise Questions 222

6 The Disturbing Function 225
6.1 Introduction 225
6.2 The Disturbing Function 226
6.3 Expansion Using Legendre Polynomials 228
Contents

6.4 Literal Expansion in Orbital Elements 233
6.5 Literal Expansion to Second Order 238
6.6 Terms Associated with a Specific Argument 246
6.7 Use of the Disturbing Function 248
6.8 Lagrange’s Planetary Equations 251
6.9 Classification of Arguments in the Disturbing Function 253
6.10 Sample Calculations of the Averaged Disturbing Function 261
6.11 The Effect of Planetary Oblateness 264
Exercise Questions 270

7 Secular Perturbations 274
7.1 Introduction 274
7.2 Secular Perturbations for Two Planets 274
7.3 Jupiter and Saturn 279
7.4 Free and Forced Elements 283
7.5 Jupiter, Saturn, and a Test Particle 289
7.6 Gauss’s Averaging Method 293
7.7 Generalised Secular Perturbations 299
7.8 Secular Theory for the Solar System 302
7.9 Generalised Free and Forced Elements 307
7.10 Hirayama Families and the IRAS Dust Bands 309
7.11 Secular Resonance 314
7.12 Higher Order Secular Theory 317
Exercise Questions 318

8 Resonant Perturbations 321
8.1 Introduction 321
8.2 The Geometry of Resonance 321
8.3 The Physics of Resonance 326
8.4 Variation of Orbital Elements 328
8.5 Resonance in the Circular Restricted Three-Body Problem 332
8.6 The Pendulum Model 334
8.7 Libration Width 337
8.8 The Hamiltonian Approach 341
8.9 The 2:1 Resonance 364
8.10 The 3:1 and 7:4 Resonances 371
8.11 Additional Resonances and Resonance Splitting 373
8.12 Resonant Encounters 375
8.13 The Dynamics of Capture and Evolution in Resonance 385
8.14 Two-Body Resonances in the Solar System 387
8.15 Resonant Encounters in Satellite Systems 390
8.16 Three-body Resonance 394
8.17 The Laplace Resonance 396
Contents

8.18 Secular and Resonant Motion 399
8.19 LONGSTOP Uranus 402
8.20 Pulsar Planets 405
Exercise Questions 406

9 Chaos and Long-Term Evolution 409
9.1 Introduction 409
9.2 Sensitive Dependence on Initial Conditions 410
9.3 Regular and Chaotic Orbits 413
9.4 Chaos in the Circular Restricted Problem 421
9.5 Algebraic Mappings 428
9.6 Separatrices and Resonance Overlap 448
9.7 The Rotation of Hyperion 452
9.8 The Kirkwood Gaps 456
9.9 The Neptune-Pluto System 466
9.10 The Stability of the Solar System 469
Exercise Questions 471

10 Planetary Rings 474
10.1 Introduction 474
10.2 Planetary Ring Systems 475
10.3 Resonances in Rings 481
10.4 Density Waves and Bending Waves 492
10.5 Narrow Rings and Sharp Edges 495
10.6 The Encke Gap and Pan 512
10.7 The F Ring of Saturn 515
10.8 The Adams Ring of Neptune 518
10.9 The Evolution of Rings 520
10.10 The Earth’s Dust Ring 522
Exercise Questions 524

Appendix A: Solar System Data 526
A.1 Introduction 526
A.2 Astronomical Constants 526
A.3 Julian Date 527
A.4 Orbital Elements of the Planets and Their Variation 529
A.5 Planets, Satellites, and Rings 530
A.6 Asteroids, Centaurs, Trans-Neptunian Objects, and Comets 535

Appendix B: Expansion of the Disturbing Function 539

References 557

Index 577
1 Structure of the Solar System

There’s not the smallest orb which thou behold’st
But in his motion like an angel sings,
Still quiring to the young-eyed cherubins;
Such harmony is in immortal souls;

William Shakespeare, Merchant of Venice, V, i

1.1 Introduction

It is a laudable human pursuit to try to perceive order out of the apparent randomness of nature; science is, after all, an attempt to make sense of the world around us. Moving against the background of the “fixed” stars, the regularity of the Moon and planets demanded a dynamical explanation.

The history of astronomy is the history of a growing awareness of our position (or lack of it) in the universe. Observing, exploring, and ultimately understanding our solar system is the first step towards understanding the rest of the universe. The key discovery in this process was Newton’s formulation of the universal law of gravitation; this made sense of the orbits of planets, satellites, and comets, and their future motion could be predicted: The Newtonian universe was a deterministic system. The Voyager missions increased our knowledge of the outer solar system by several orders of magnitude, and yet they would not have been possible without knowledge of Newton’s laws and their consequences. However, advances in mathematics and computer technology have now revealed that, even though our system is deterministic, it is not necessarily predictable. The study of nonlinear dynamics has revealed a solar system even more intricately structured than Newton could have imagined.

In this chapter we review some of the observations that have motivated the quest for an understanding of the dynamical structure of the solar system.
1 Structure of the Solar System

1.2 The Belief in Number

The desire to perceive order in the distribution of objects in the solar system can be traced to early Greece, although it may have had its roots in Babylonian astronomy. Anaximander of Miletus (611–547 B.C.) claimed that the relative distances of the stars, Moon, and Sun from the Earth were in the ratio 1:2:3 (Bernal 1969). The importance of whole numbers to members of the Pythagorean school led them to believe that the distances of the heavenly bodies from the Earth corresponded to a sequence of musical notes and this gave rise to the concept of the “harmony of the spheres”. This, in turn, influenced Plato (427–347 B.C.) whose work was to have a great effect on Johannes Kepler nearly two thousand years later (Field 1988).

Kepler was obsessed with the belief that numbers and geometry could be used to explain the spacing of the planetary orbits. He firmly believed in the Copernican rather than the Ptolemaic system, but his views on planetary orbits had foundations in numerology and astrology (Field 1988) rather than scientific method. In the first edition of his book Mysterium Cosmographicum, Kepler (1596) described his model of the solar system, which consisted of the six known planets (Mercury, Venus, Earth, Mars, Jupiter, and Saturn) moving within spherical shells whose inner and outer surfaces had precise separations determined by the circumspheres and inspheres of the five regular polyhedra (cube, tetrahedron, dodecahedron, icosahedron, and octahedron). Kepler believed that the widths of these shells were related to the orbital eccentricities. This is illustrated in Fig. 1.1 for the outer solar system. He also developed a similar theory to explain the relative spacings of the newly discovered moons of Jupiter (Kepler 1610). Between the first and second editions of Mysterium Cosmographicum, Kepler had empirically deduced the first two of his laws of planetary motion (Kepler 1609), and the notes accompanying the second edition (Kepler 1621) make it clear that his belief in astrology was waning (Field 1988). Although it is unlikely that he had a literal belief in musical notes emanating from the planets, Kepler persisted in his search for harmonic relationships between orbits.

Despite its metaphysical origins, Kepler’s geometrical model was a surprisingly good fit to the available data (Field 1988). Although Kepler looked unsuccessfully for simple numerical relationships between the orbital distances of the planets, it was his fascination with numbers that ultimately led to the discovery of his third law of motion, which relates the orbital period of a planet to its average distance from the Sun. On 15 May 1618 he became convinced that “it is most certain and most exact that the proportion between the periods of any two planets is precisely three halves the proportion of the mean distances”. Kepler’s most important legacy was not his intricate geometrical model of the spacing of the planets, but his empirical derivation of his laws of planetary motion.
1.3 Kepler’s Laws of Planetary Motion

Kepler (1609, 1619) derived his three laws of planetary motion using an empirical approach. From observations, including those made by Tycho Brahe, Kepler deduced that:

1) The planets move in ellipses with the Sun at one focus.
2) A radius vector from the Sun to a planet sweeps out equal areas in equal times.
3) The square of the orbital period of a planet is proportional to the cube of its semi-major axis.

The geometry implied by the first two laws is illustrated in Fig. 1.2. An ellipse has two foci and according to the first law the Sun occupies one focus while the other one is empty (Fig. 1.2a). In Fig. 1.2b each shaded region represents the area swept out by a line from the Sun to an orbiting planet in equal time intervals, and the second law states that these areas are equal. The geometry of the ellipse will be considered further in Chapter 2.

Half the length of the long axis of the ellipse is called the semi-major axis, \(a \) (see Fig. 1.2a). Kepler’s third law relates \(a \) to the period \(T \) of the planet’s orbit. He deduced that \(T^2 \propto a^3 \), so that if two planets have semi-major axes \(a_1 \) and \(a_2 \), then their orbital periods are related by:

\[
\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}
\]
1 Structure of the Solar System

Fig. 1.2. The geometry implied by Kepler’s first two laws of planetary motion for an eccentricity of 0.5. (a) The Sun occupies one of the two foci of the elliptical path traced by the planet; the other focus is empty. (b) The regions A_1, A_2, and A_3 denote equal areas swept out in equal times by the radius vector.

If a_2 and periods T_1 and T_2, then $T_1/T_2 = (a_1/a_2)^{3/2}$, which is consistent with his original formulation of the law.

It is important to remember that Kepler’s laws were purely empirical: He had no physical understanding of why the planets obeyed these laws, although he did propose a “magnetic vortex” to explain planetary orbits.

1.4 Newton’s Universal Law of Gravitation

In the seventeenth century Isaac Newton (1687) proved that a simple, inverse square law of force gives rise to all motion in the solar system. There is good evidence that Robert Hooke, a contemporary and rival of Newton, had proposed the inverse square law of force before Newton (Westfall 1980) but Newton’s great achievement was to show that Kepler’s laws of motion are a natural consequence of this force and that the resulting motion is described by a conic section.

In scalar form, Newton proposed that the magnitude of the force F between any two masses in the universe, m_1 and m_2, separated by a distance d is given by

$$F = \frac{G m_1 m_2}{d^2},$$

where G is the universal constant of gravitation.

In his *Principia* Newton (1687) also propounded his three laws of motion:

1) Bodies remain in a state of rest or uniform motion in a straight line unless acted upon by a force.
2) The force experienced by a body is equal to the rate of change of its momentum.
3) To every action there is an equal and opposite reaction.
1.5 The Titius–Bode “Law”

The combination of these laws with the universal law of gravitation was to have a profound effect on our understanding of the universe. Although Newton “stood on the shoulders of giants” such as Copernicus, Kepler, and Galileo, his discoveries revolutionised science in general and dynamical astronomy in particular. By extending Newtonian gravitation to more than two bodies it was shown that the mutual planetary interactions result in ellipses that are no longer fixed. Instead the orbits of the planets slowly rotate or precess in space over timescales of ~10^5 y. For example, calculations based on the Newtonian model have shown that the orbit of Mercury should currently be precessing at a rate of $531'\text{ century}^{-1}$.

However, observations show that Mercury’s orbit is precessing at a rate that is $43'\text{ century}^{-1}$ greater than that predicted by the Newtonian model. We now know that Newton’s universal law of gravitation is only an approximation, albeit a very good one, and that a better model of gravity is given by Einstein’s general theory of relativity. Applied to the precession of Mercury’s perihelion this predicts an additional contribution of $43'\text{ century}^{-1}$, and the combination of the relativistic contribution to the Newtonian model gives an agreement that is within the current observational limitations (Roseveare 1982).

1.5 The Titius–Bode “Law”

The regularity in the spacing of the planetary orbits led to the formulation of a simple mnemonic by Johann Titius in 1766 (Nieto 1972). Titius pointed out that the mean distance d in astronomical units (AU) from the Sun to each of the six known planets was well approximated by the equation

$$d = 0.4 + 0.3(2^i), \quad \text{where } i = -\infty, 0, 1, 2, 4, 5. \quad (1.2)$$

The “law” was soon popularised by Johann Bode and is now commonly referred to as Bode’s law. Although the “law” had no physical foundation, Bode claimed that an undiscovered planet orbited at the $i = 3$ location. The subsequent discovery of the planet Uranus in 1781 at 19.18 AU ($i = 6$) and the first asteroid (1) Ceres in 1801 at 2.77 AU ($i = 3$) were considered triumphs of the “law” (see Table 1.1 and Nieto 1972).

Such was the success of the Titius–Bode “law” that both John Couch Adams (1847) and Urbain Le Verrier (1847) used it as a basis for their calculations on the predicted orbit of the eighth planet (Grosser 1979). Using $i = 7$ in Eq. (1.2) the “law” predicts a semi-major axis of 38.8 AU; the planet Neptune was discovered in 1846, but it has a semi-major axis of 30.1 AU. The breakdown of the “law” was complete with the discovery of Pluto in 1929 at 39.4 AU compared with a predicted distance of 77.2 AU ($i = 8$). Of course, it could be argued that Pluto is too small to be considered a planet and should therefore be excluded from the
Table 1.1. A comparison of the semi-major axes of the planets, including the minor planet Ceres, with the values predicted by the Titius–Bode law.

<table>
<thead>
<tr>
<th>Planet</th>
<th>i</th>
<th>Semi-major Axis (AU)</th>
<th>Titius–Bode Law (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>−∞</td>
<td>0.39</td>
<td>0.4</td>
</tr>
<tr>
<td>Venus</td>
<td>0</td>
<td>0.72</td>
<td>0.7</td>
</tr>
<tr>
<td>Earth</td>
<td>1</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>Mars</td>
<td>2</td>
<td>1.52</td>
<td>1.6</td>
</tr>
<tr>
<td>Ceres</td>
<td>3</td>
<td>2.77</td>
<td>2.8</td>
</tr>
<tr>
<td>Jupiter</td>
<td>4</td>
<td>5.20</td>
<td>5.2</td>
</tr>
<tr>
<td>Saturn</td>
<td>5</td>
<td>9.54</td>
<td>10.0</td>
</tr>
<tr>
<td>Uranus</td>
<td>6</td>
<td>19.18</td>
<td>19.6</td>
</tr>
<tr>
<td>Neptune</td>
<td>7</td>
<td>30.06</td>
<td>38.8</td>
</tr>
<tr>
<td>Pluto</td>
<td>8</td>
<td>39.44</td>
<td>77.2</td>
</tr>
</tbody>
</table>

calculation. However, if every value of i is filled we should expect an infinite number of planets between Mercury and Venus!

Some of the regular satellite systems of the outer planets appear to have nonrandom distributions because there are a number of simple numerical relationships between their periods (see Sects. 1.6 and 1.7). In an attempt to incorporate orbital resonances into a Titius–Bode “law”, Dermott (1972, 1973) discussed the significance of a modified form of the law using a two-parameter, geometric progression of orbital periods rather than orbital distances. Writing

$$T_i = T_0 A^i,$$ \hspace{1cm} (1.3)

where the satellites are numbered in order of increasing period, T_i is the predicted orbital period of the ith satellite, and T_0 and A are arbitrary constants, Dermott pointed out that if the possibility of “empty orbitals” is excluded from the system, then such a relationship can only hold for the regular satellites of Uranus. Taking the logarithm of each side of Eq. (1.3), we have

$$\log T_i = \log T_0 + i \log A.$$ \hspace{1cm} (1.4)

The observed data can then be fitted to this model using a standard linear regression technique where one measure of the goodness of fit is the root mean square (rms) value, χ, of the residuals. This is given by

$$\chi^2 = \frac{1}{n} \sum_{i=1}^{n} (\log T_i - \log T_0 - i \log A)^2,$$ \hspace{1cm} (1.5)

where T_i is now understood to be the observed orbital period. The comparison of the predictions with the observed data shown in Table 1.2 and Fig. 1.3 seem remarkably favourable. Using the fitted parameters of $T_0 = 0.7919, A = 1.777$
1.5 The Titius–Bode “Law”

Table 1.2. A comparison of the observed orbital period (in days) of the large satellites of Uranus with values calculated using a geometric progression of the form of Eq. (1.3).

<table>
<thead>
<tr>
<th>Satellite</th>
<th>(i)</th>
<th>(T_i) (obs.)</th>
<th>(T_i) (calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miranda</td>
<td>1</td>
<td>1.413</td>
<td>1.407</td>
</tr>
<tr>
<td>Ariel</td>
<td>2</td>
<td>2.520</td>
<td>2.500</td>
</tr>
<tr>
<td>Umbriel</td>
<td>3</td>
<td>4.144</td>
<td>4.442</td>
</tr>
<tr>
<td>Titania</td>
<td>4</td>
<td>8.706</td>
<td>7.893</td>
</tr>
<tr>
<td>Oberon</td>
<td>5</td>
<td>13.46</td>
<td>14.02</td>
</tr>
</tbody>
</table>

we obtain \(\chi = 0.0247 \). However, it is not enough to be impressed by the seemingly remarkable fits. We need to subject the data to a statistical test and to calculate whether or not the value of \(\chi \) is small enough to be statistically significant. This can be addressed using a Monte Carlo approach.

Using a technique similar to that of Dermott (1972, 1973) we have generated a series of sets of five satellites subject to certain restrictions on the distribution of their orbital periods. The innermost satellite was always chosen to have the observed orbital period of Miranda. The remaining periods were then generated using the relationship

\[
\frac{T_{i+1}}{T_i} = L + x_i(U - L) \quad (i = 1, 2, 3, 4),
\]

where \(x_i \) is a random number in the range \(0 \leq x_i \leq 1 \), and \(L \) and \(U (> L) \) represent the fixed lower and upper limits on the ratio of successive orbital periods in the system. For each such system of five satellites the parameters \(\log T_0 \) and \(\log A \) and the rms deviation \(\chi \) are determined.

Fig. 1.3. A linear, least squares fit for the orbital periods, \(T_i \), of the five major uranian satellites.
The choice of L and U is to some extent arbitrary. For the five uranian satellites the observed values are $L = 1.546$ and $U = 2.101$. By generating 10^5 sets of five satellites with periods given by the formula in Eq. (1.6), we can determine the number that have a value of $\chi < 0.0247$ for these values of L and U. Hence we estimate that the probability that the current configuration has arisen by chance is 0.79. Thus, despite the seemingly impressive fit displayed in Table 1.2 and Fig. 1.3, almost any distribution of periods, subject to the same constraints on L and U, would fit into a Titius–Bode “law” equally well.

We have investigated the sensitivity of this estimate to the values of L and U by repeating the above procedure for $L = 1.0, 1.2, 1.4, \text{ and } 1.6$ using values of U in the range $1.2 < U < 5$. For every value of L and U we have calculated the value of χ for each of the set of 10^5 systems of five satellites. In each case we calculated the number of systems, N, for which $\chi < 0.0247$ and hence we estimated the probability $P(\chi < 0.0247) = 10^{-5}N$ for those values of L and U. The results are shown in Fig. 1.4. It is clear that $P \to 1$ as $U \to L$ when the ratios of successive periods are nearly equal. However, P only becomes small ($P < 0.01$) for large values of U, corresponding to widely spaced satellites.

These results suggest that the apparent regular spacing of the orbital periods shown in Table 1.2 is not significant. There is no compelling evidence that the uranian satellite system is obeying any relation similar to the Titius–Bode “law”, beyond what would be expected by chance. This leads us to suggest that the “law” as applied to other systems, including the planets themselves, is also without significance. However, even though there are no grounds for belief in a Titius–

![Fig. 1.4](image-url)
Bode “law”, the various bodies of the solar system do exhibit some remarkable numerical relationships and these can be shown to be dynamically significant.

1.6 Resonance in the Solar System

Our knowledge of the solar system has increased dramatically in recent years. Although no new planets have been discovered since 1930, there have been a number of advances in the study of the minor members of the solar system. By the start of the twentieth century 22 planetary satellites had been discovered and now there are known to be more than 60 satellites (see Appendix A) with indirect evidence for the existence of others. In addition there are currently more than 10,000 catalogued asteroid orbits and more than 500 reliable orbits for comets. Numerous bodies have been discovered with orbits beyond that of Pluto in the Edgeworth–Kuiper belt. Some estimates suggest that there may be as many as 2×10^8 objects with radii ~ 10 km in this region (Cochran et al. 1995). Observations by the Infra-Red Astronomical Satellite (IRAS) have revealed the presence of dust bands in the asteroid belt and dust trails associated with comets. The study of planetary rings has also undergone radical changes; prior to 1977 it was believed that Saturn was the only ringed planet, whereas now we know that all the giant planets possess ring systems, each with unique characteristics.

The avalanche of planetary data in recent years has provided striking confirmation that our solar system is a highly structured assembly of orbiting bodies, but the structure is not as simple as Kepler’s geometrical model nor as crude as that implied by the Titius–Bode “law”. It is Newton’s laws that are at work and the subtle gravitational effect that determines the dynamical structure of our solar system is the phenomenon of resonance.

In basic terms a resonance can arise when there is a simple numerical relationship between frequencies or periods. The periods involved could be the rotational and orbital periods of a single body, as in the case of spin–orbit coupling, or perhaps the orbital periods of two or more bodies, as in the case of orbit–orbit coupling. Other, more complicated resonant relationships are also possible. We now know that dissipative forces are driving evolutionary processes in the solar system and that these are connected with the origins of some of these resonances.

The most obvious example of a spin–orbit resonance is the Moon, which has an orbital period that is equal to its rotational period, resulting in the Moon keeping one face towards the Earth. Most of the major, natural satellites in the solar system are in a 1:1 or synchronous spin–orbit resonance. However, other spin–orbit states are also possible and radar observations of Mercury by Pettengill & Dyce (1965) showed that the planet Mercury is in a 3:2 spin–orbit resonance.

In the following sections we discuss each of the subsystems of the solar system.
1.6.1 The Planetary System

The orbital elements of Jupiter and Saturn are modified on a \(\sim 900 \) y timescale by a 5:2 near-resonance between their orbital periods, which French astronomers called \textit{la grande inégalité} (the great inequality). Although the two planets are not actually in a 5:2 resonance they are sufficiently close to it for significant perturbations to be experienced by both bodies.

The planets Neptune and Pluto are in a peculiar 3:2 orbit–orbit resonance that maximises their separation at conjunction with the result that they avoid a close approach. The complexity of the Neptune–Pluto resonance was discovered and has been studied, not by a prolonged series of observations, but by direct numerical integration of the appropriate equations of motion. This is the only possible technique because observations of Pluto span less than a third of its orbital period.

As well as the resonances involving their orbital periods, some of the planets are also involved in long-term or \textit{secular} resonances associated with the precession of the planetary orbits in space.

1.6.2 The Jupiter System

Perhaps the most striking example of orbit–orbit resonance occurs amongst three of the Galilean satellites of Jupiter (see Fig. 1.5). Io is in a 2:1 resonance with Europa, which is itself in a 2:1 resonance with Ganymede, resulting in all three satellites being involved in a configuration known as a \textit{Laplace resonance}. The average orbital angular velocity or \textit{mean motion} \(n \) in \(\text{d}^{-1} \) is defined by \(n = \frac{360}{T} \), where \(T \) is the orbital period of the body in days. The mean motions of Io, Europa, and Ganymede are

\[
 n_1 = 203.488992435 \text{d}^{-1}. \quad (1.7)
\]

![Fig. 1.5. A montage of images of the Galilean satellites of Jupiter shown to the same relative sizes. The satellites are (from left to right) Io, Europa, Ganymede, and Callisto. Ganymede has a mean radius of 2,634 km and is the largest moon in the solar system. The images were taken by the \textit{Galileo} spacecraft. (Image courtesy of NASA/JPL.)](image)
1.6 Resonance in the Solar System

\[n_E = 101.374761672 \text{d}^{-1}, \]
(1.8)

and \n
\[n_G = 50.317646290 \text{d}^{-1} \]
(1.9)

respectively. Hence

\[\frac{n_I}{n_E} = 2.007294411 \]
(1.10)

and

\[\frac{n_E}{n_G} = 2.014696018 \]
(1.11)

or

\[\frac{n_G}{n_E} = \frac{1}{2} (1 - 0.007294411). \]
(1.12)

From this we deduce that, to within observational error \(10^{-9} \text{d}^{-1}\),

\[n_I - 3n_E + 2n_G = 0. \]
(1.13)

This relation, which is known as the Laplace relation, prevents the occurrence of triple conjunctions of the three satellites. The geometry of the resonance ensures that when a conjunction takes place between any pair of satellites, the third satellite is always at least \(60^\circ\) away. The \(2:1\) Io–Europa resonance is directly responsible for the active vulcanism on Io that was first observed by the Voyager 1 spacecraft in 1979, three weeks after the publication of the paper by Peale et al. (1979) in which the phenomenon was predicted.

The planet Jupiter has a thin ring, the structure of which is thought to have been created by resonances; in this case the resonances involve numerical relationships between frequencies associated with the motions of dust particles in Jupiter’s gravitational field and the rotation of the magnetic field of the planet (Burns et al. 1984).

1.6.3 The Saturn System

The saturnian system (Fig. 1.6) has perhaps the widest variety of resonant phenomena. For example, the satellites Mimas and Tethys are in a \(4:2\) orbit–orbit resonance and the ratio of their mean motions, \(n_M\) and \(n_{Te}\), is

\[\frac{n_M}{n_{Te}} = 2.003139. \]
(1.14)

Enceladus and Dione are in a \(2:1\) orbit–orbit resonance and the ratio of their mean motions, \(n_E\) and \(n_D\), is given by

\[\frac{n_E}{n_D} = 1.997431. \]
(1.15)
Similarly, Titan and Hyperion are in a 4:3 orbit–orbit resonance and the ratio of their mean motions, n_Ti and n_H, is given by

$$\frac{n_Ti}{n_H} = 1.334342.$$ \hspace{1cm} (1.16)

As well as being involved in resonances with other major satellites, Dione and Tethys each maintain smaller objects in their orbits by means of a 1:1 orbit–orbit resonance. The satellites Janus and Epimetheus move on horseshoe orbits and periodically change their radial positions (either closer or further from Saturn) owing to their 1:1 orbital resonance.

The 2:1 resonant perturbations of Mimas produce a gap, the Cassini division, between Saturn’s A and B rings, while most of the structure visible in the A ring of Saturn can be explained by the resonant effects of the small satellites Pandora, Prometheus, and Janus in orbit just beyond the main ring system. The radial extent of the Encke gap in the A ring can also be understood in terms of the gravitational effect of a small satellite that acts to clear the gap. A dramatic confirmation of this mechanism came with the discovery by Showalter (1991) of Pan, Saturn’s eighteenth satellite, based on predictions made by Cuzzi and Scargle (1985).

1.6.4 The Uranus System

The ring system of Uranus has a number of examples of resonant phenomena, although none involve the five major satellites. However, if we consider the
small satellites we find that Rosalind and Cordelia are close to a 5:3 resonance (Murray & Thompson 1990) and Cordelia and Ophelia bound the narrow ϵ ring by means of a 24:25 and a 14:13 resonance with its inner and outer edges (Porco & Goldreich 1987). Cordelia is also involved in resonances with other ring edges. There is also good evidence for the existence of other small satellites in the main ring system based on the observed resonant structure of the rings (Murray & Thompson 1990).

In marked contrast to the jovian and saturnian systems, there are, at present, no resonances between the major satellites of the uranian system. However, some characteristics of the system, in particular the anomalously high orbital inclination of Miranda, provide strong evidence that resonances may have existed in the past and may have been responsible for resurfacing events on a number of moons of Uranus (Dermott 1984; Dermott et al. 1988; Tittemore & Wisdom 1988, 1989, 1990).

1.6.5 The Neptune System

Although the peculiar ring system of Neptune is not yet fully understood, it is likely that an explanation for the “arcs” of optically thicker material in the outermost ring, the Adams ring, will involve the resonant effects of small satellites. In particular, the satellite Galatea may be involved in shepherding and providing azimuthal confinement for material in the Adams ring (Porco 1991).

1.6.6 The Pluto System

Pluto and Charon are each in the synchronous spin state, and the system is said to be totally tidally despun. The result of the process is that the planet and its moon keep the same face towards each other. Consequently, viewed from Pluto, Charon would keep almost the same position, directly over a fixed point on the surface.

1.6.7 The Asteroid Belt

The asteroid belt also exhibits resonant structure. Explaining the gaps in the radial distribution of the asteroid orbits remains an important problem in solar system dynamics. Using a sample of < 100 asteroids, Kirkwood (1867) was the first to notice gaps in the asteroid belt corresponding to important resonances with Jupiter. The distribution of asteroids that have been discovered since Kirkwood’s time show a number of cleared regions, most notably at the 4:1, 3:1, 5:2, and 2:1 jovian resonances, but there are also concentrations of asteroids at the 3:2 and 1:1 resonances (Fig. 1.7).

The Kirkwood gaps are not entirely empty and a small number of asteroids are known to be in resonance with Jupiter at these locations. In addition, numerical
investigations have revealed several asteroids that have been or will be trapped in jovian resonances.

1.6.8 Comets, Meteors, and Dust

Numerical integrations of cometary and meteor orbits have shown that resonant phenomena can exist in such systems, although these are difficult to handle analytically because of the large eccentricities of the orbits involved.

The existence of a belt of comets in the outer solar system was postulated independently by Edgeworth (1943) and Kuiper (1951) on cosmogonical grounds. Recent numerical modelling by Duncan, Quinn, and Tremaine (1987) suggests that the Edgeworth–Kuiper belt is a more likely source of the short-period comets associated with Jupiter than the more distant Oort cloud. Objects in the Edgeworth–Kuiper belt were first detected in 1992 and more than sixty such objects are currently known to exist. Curiously enough, knowledge of their orbits suggests that almost a third of these could be involved in a 3:2 orbit–orbit resonance with Neptune and this could be evidence of evolution of planetary orbits in the early solar system (Malhotra 1995).

There is also some marginal evidence for gaps in the distribution of the semi-major axes of meteor streams (Murray 1996), those particles of dust generally associated with cometary orbits.

The discovery of a number of dust bands in the solar system (Low et al. 1984) and the subsequent identification of their close association with groupings of asteroids (Dermott et al. 1984) has highlighted the effects of secular perturbations on the orbits of interplanetary dust particles in the solar system. It has now been shown that the Earth is embedded in a dust ring composed of asteroidal particles.