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1 Some other treatments of dyadic deontic logic fall outside the scope of this paper

because they seem, on examination, to be based on ideas quite unlike the one I
wish to consider. In particular, see the discussion in [4], [2], and [9] of several
systems proposed by von Wright and by Rescher.

1

Semantic analyses for dyadic deontic logic

1. INTRODUCTION

It ought not to be that you are robbed. A fortiori, it ought not to be
that you are robbed and then helped. But you ought to be helped,
given that you have been robbed. The robbing excludes the best
possibilities that might otherwise have been actualized, and the help-
ing is needed in order to actualize the best of those that remain.
Among the possible worlds marred by the robbing, the best of a bad
lot are some of those where the robbing is followed by helping.

In this paper, I am concerned with semantic analyses for dyadic
deontic logic that embody the idea just sketched. Four such are
known to me: the treatments in Bengt Hansson [4], Sections 10–15;
in Dagfinn Føllesdal and Risto Hilpinen [2], Section 9; in Bas van
Fraassen [9]; and in my own [8], Section 5.1.1 My purpose here is to
place these four treatments within a systematic array of alternatives,
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and thereby to facilitate comparison. There are superficial differences
galore; there are also some serious differences.

My results here are mostly implicit in [8], and to some extent also
in [7]. But those works are devoted primarily to the study of coun-
terfactual conditionals. The results about dyadic deontic logic that
can be extracted thence via an imperfect formal analogy between the
two subjects are here isolated, consolidated, and restated in more
customary terms.

II. LANGUAGE

The language of dyadic deontic logic is built up from the following
vocabulary: (1) a fixed set of sentence letters; (2) the usual truth-
functional connectives Á, ', ;, &, ∨, ⊃, and ; (the first two being
zero-adic ‘connectives’); and (3) the two dyadic deontic operators
O(-/-) and P(-/-), which we may read as ‘It ought to be that . . . ,
given that . . . ’ and ‘It is permissible that . . . , given that . . . ’, respec-
tively. They are meant to be interdefinable as follows: either P(A/B)
5 df ; O(;A/B) or else O(A/B) 5 df ; P(;A/B). Any sentence in
which O(-/-) or P(-/-) occurs is a deontic sentence; a sentence is iterative
iff it has a subsentence of the form O(A/B) or P(A/B) where A or B
is already a deontic sentence. (We regard a sentence as one of its own
subsentences.) In metalinguistic discourse, as exemplified above, vo-
cabulary items are used to name themselves; the letters early in the
alphabet, perhaps subscripted, are used as variables over sentences;
and concatenation is represented by concatenation.

III. INTERPRETATIONS

v b is an interpretation of this language over a set I iff (1) v b is a function
that assigns to each sentence A a subset vAb of I, and (2) v b obeys the
following conditions of standardness:

(2.1) vÁb 5 I,
(2.2) v'b 5 ∅,
(2.3) v; Ab 5 I 2 vAb,
(2.4) vA & Bb 5 vAb ∩ vBb,
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(2.5) vA ∨ Bb 5 vAb ∪ vBb,
(2.6) vA ⊃ Bb 5 v ;A ∨ Bb,
(2.7) vA ; Bb 5 v(A ⊃ B) & (B ⊃ A)b
(2.8) vP(A/B)b 5 v ;O(;A/B)b.

We call vAb the truth set of a sentence A, and we say that A is true or
false at a member i of I (under the interpretation v b) according as i
does or does not belong to the truth set vAb.

We have foremost in mind the case that I is the set of all possible
worlds (and we shall take the liberty of calling the members of I worlds
whether they are or not). Then we can think of vAb also as the
proposition expressed by the sentence A (under v b): an interpretation
pairs sentences with propositions, a proposition is identified with the
set of worlds where it is true, and a sentence is true or false according
as it expresses a true or false proposition.

The sentences of the language are built up from the sentence letters
by means of the truth-functional connectives and the deontic opera-
tors. Likewise an interpretation is determined stepwise from the truth
sets of the sentence letters by means of the truth conditions for those
connectives and operators. (2.1–7) impose the standard truth condi-
tions for the former. (2.8) transforms truth conditions for O(-/-) into
truth conditions for P(-/-), making the two interdefinable as we
intended. The truth conditions for O(-/-) have so far been left en-
tirely unconstrained.

IV. VALUE STRUCTURES

Our intended truth conditions for O(-/-) are to depend on a posited
structure of evaluations of possible worlds. We seek generality,
wherefore we say nothing in particular about the nature, source, or
justifiability of these evaluations. Rather, our concern is with their
structure. A mere division of worlds into the ideal and the less-than-
ideal will not meet our needs. We must use more complicated value
structures that somehow bear information about comparisons or gra-
dations of value.

An interpretation is based, at a particular world, on a value structure
iff the truth or falsity of every sentence of the form O(A/B), at that
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world and under that interpretation, depends in the proper way on
the evaluations represented by the value structure.

Let v b be an interpretation over a set I, and let i be some particular
world in I. In the case we have foremost in mind, I really is the set
of all possible worlds; and i is our actual world, so that truth at i is
actual truth, or truth simpliciter. We consider value structures of four
kinds.

First, a choice function f over I is a function that assigns to each subset
X of I a subset fX of X, subject to two conditions: (1) if X is a subset
of Y and fX is nonempty, then fY also is nonempty; and (2) if X is a
subset of Y and X overlaps fY, then fX 5 X ∩ fY. v b is based, at i, on
a choice function f over I iff any sentence of the form O(A/B) is true
at i under v b iff f vBb is a nonempty subset of vAb. Motivation: fX is
to be the set of the best worlds in X. Then O(A/B) is true iff, non-
vacuously, A holds throughout the B-worlds chosen as best.

Second, a ranking 〈K, R〉 over I is a pair such that (1) K is a subset of
I; and (2) R is a weak ordering of K. R is a weak ordering, also called a
total preordering, of a set K iff (1) R is a dyadic relation among members
of K; (2) R is transitive; and (3) for any j and k in K, either jRk or kRj –
that is, R is strongly connected on K. v b is based, at i, on a ranking 〈K, R〉
over I iff any sentence of the form O(A/B) is true at i under v b iff, for
some j in vA & Bb ∩ K, there is no k in v;A & Bb ∩ K such that kRj.
Motivation: K is to be the set of worlds that can be evaluated – perhaps
some cannot be – and kRj is to mean that k is at least as good as j.
Then O(A/B) is true iff some B-world where A holds is ranked above
all B-worlds where A does not hold.

Third, a nesting $ over I is a set of subsets of I such that, whenever
S and T both belong to $, either S is a subset of T or T is a subset of
S. v b is based, at i, on a nesting $ over I iff any sentence of the form
O(A/B) is true at i under v b iff, for some S in $, S ∩ vBb is a
nonempty subset of vAb. Motivation: each S in $ is to represent one
permissible way to divide the worlds into the ideal ones (those in S)
and the non-ideal ones. Different members of $ represent more or
less stringent ways to draw the line. Then O(A/B) is true iff there is
some permissible way to divide the worlds on which, non-vacuously,
A holds at all ideal B-worlds.

Fourth, an indirect ranking 〈V, R, f〉 over I is a triple such that (1) V
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is a set; (2) R is a weak ordering of V (defined as before); and (3) f is
a function that assigns to each j in I a subset f( j ) of V. v b is based,
at i, on an indirect ranking 〈V, R, f〉 iff any sentence of the form
O(A/B) is true at i under v b iff, for some v in some f( j ) such that j
belongs to vA & Bb, there is no w, in any f(k) such that k belongs to
v;A & Bb, such that wRv. Motivation (first version): V is to be a set
of ‘values’ realizable at worlds; wRv is to mean that w is at least as
good as v; and f( j ) is to be the set of values realized at the world j.
Then O(A/B) is true iff some value realized at some B-world where
A holds is ranked higher than any value realized at any B-world
where A does not hold. Motivation (second version): we want a
ranking of worlds in which a single world can recur at more than
one position – much as Grover Cleveland has two positions in the
list of American presidents, being the 22nd and also the 24th. Such a
‘multipositional’ ranking cannot be a genuine ordering in the usual
mathematical sense, but we can represent it by taking a genuine
ordering R of an arbitrarily chosen set V of ‘positions’ and providing
a function f to assign a set of positions – one, many, or none – to
each of the objects being ranked. Then O(A/B) is true iff some B-
world where A holds, in some one of its positions, is ranked above
all B-worlds where A does not hold, in all of their positions.

The value structures over I comprise all four kinds: all choice func-
tions, rankings, nestings, and indirect rankings over I. Note that
(unless I is empty) nothing is a value structure of two different kinds
over I.

An arbitrary element in our truth conditions must be noted. A
value structure may ignore certain inevaluable worlds: for a choice
function f, the worlds that belong to no fX; for a ranking 〈K, R〉, the
worlds left out of K; for a nesting $, the worlds that belong to no S
in $; and for an indirect ranking 〈V, R, f〉, the worlds j such that f( j )
is empty. Suppose now that B is true only at some of these inevaluable
worlds, or that B is impossible and true at no worlds at all. Then
O(-/B) and P(-/B) are vacuous. We have chosen always to make
O(A/B) false and P(A/B) true in case of vacuity, but we could just as
well have made O(A/B) true and P(A/B) false. Which is right? Given
that 0 5 1, ought nothing or everything to be the case? Is everything
or nothing permissible? The mind boggles. As for formal elegance,
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either choice makes complications that the other avoids. As for prec-
edent, van Fraassen has gone our way but Hansson and Føllesdal and
Hilpinen have gone the other way. In any case, the choice is not
irrevocable either way. Let O9(-/-) and P9(-/-) be just like our pair
O(-/-) and P(-/-) except that they take the opposite truth values in
case of vacuity. The pairs are interdefinable: either let O9(A/B) 5 df

O(Á/B) ⊃ O(A/B) or else let O(A/B) 5 df ;O9('/B) & O9(A/B).

V. TRIVIAL, NORMAL, AND UNIVERSAL VALUE

STRUCTURES

There exist trivial value structures, of all four kinds, in which every
world is inevaluable. We might wish to ignore these, and use only
the remaining non-trivial, or normal, value structures. Or we might
go further and use only the universal value structures with no ineval-
uable worlds at all. It is easily shown that a value structure is normal
iff, under any interpretation based on it at any world i, some sentence
of the form O(Á/B) is true at i. (And if so, then in particular
O(Á/Á) is true at i.) Likewise, a value structure is universal iff, under
any interpretation based on it at any world i, any O(Á/B) is true at i
except when B is false at all worlds.

VI. LIMITED AND SEPARATIVE VALUE STRUCTURES

The limited value structures are, informally, those with no infinitely
ascending sequences of better and better and better worlds. More
precisely, they are: (1) all choice functions; (2) all rankings 〈K, R〉
such that every nonempty subset X of K has at least one R-maximal
element, that being a world j in X such that jRk for any k in X; (3) all
nestings $ such that, for any nonempty subset S of $, the intersection
>S of all sets in S is itself a member – the smallest one – of S; and
(4) all indirect rankings 〈V, R, f〉 such that, if we define the supersphere
of any v in V as the set of all worlds j such that wRv for some w in
f( j ), then for any nonempty set S of superspheres, the intersection
>S of all sets in S is itself a member of S. Clearly some but not all
rankings, some but not all nestings, and some but not all indirect
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rankings are limited. Value structures of any kind over finite sets,
however, are always limited.

Semantically, a limited value structure is one that guarantees (ex-
cept in case of vacuity) that the full story of how things ought to be,
given some circumstance, is a possible story. That is not always so.
For instance, let the value structure be a ranking that provides an
infinite sequence j1, j2 . . . of better and better worlds. Let B be true
at all these worlds and no others; let A1 be true at all but j1, A2 at all
but j1 and j2, and so on. Then O(-/B) is not vacuous and all of
O(B/B), O(A1/B), O(A2/B), . . . are true; yet at no world are all of
B, A1, A2, . . . true together, so even this much of the story of how
things ought to be, given that B, is impossible. A limited ranking
would preclude such a case, of course, since the set {j1, . . . } has no
maximal element. In general, a value structure is limited iff, under
any interpretation based on it at any world i, whenever O(-/B) is
non-vacuous and A is the set of all sentences A for which O(A/B) is
true at i, there is a world where all the sentences in A are true
together.

The separative value structures are, informally, those in which any
world that surpasses various of its rivals taken separately also surpasses
all of them taken together. More precisely, they are: (1) all choice
functions; (2) all rankings; (3) all nestings $ such that, for any nonempty
subset S of $, the intersection >S is the union <T of some subset T
of $; and (4) all indirect rankings such that, for any nonempty set S of
superspheres, the intersection >S is the union <T of some set T of
superspheres. All limited value structures are separative, but not con-
versely. Some but not all non-limited nestings are separative, as are
some but not all non-limited indirect rankings. Semantically, a value
structure is separative iff, under any interpretation based on it at any
world i, if (1) A is true at just one world, (2) O(A/B) is true at i for
every B in a set B, and (3) C is true at just those worlds where at least
one B in B is true, then O(A/C) is true at i.

VII. CLOSED AND LINEAR VALUE STRUCTURES

A nesting $ is closed iff, for any subset S of $, the union <S of all sets
in S belongs to $. Closure has no semantic effect, as we shall see, but
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we must mention it in order to make contact with my results in [8].
Note that a closed nesting $ is separative iff, for any nonempty subset
S of $, >S belongs to $.

An indirect ranking 〈V, R, f〉 is linear iff there are no two distinct
members v and w of V such that both vRw and wRv. We shall see
that linearity also has no semantic effect.

VIII. EQUIVALENCE

We call two value structures equivalent iff any interpretation that is
based, at a world, on either one is also based, at that world, on the
other. Equivalence is rightly so called: it is a reflexive, symmetric,
transitive relation among value structures, and consequently it parti-
tions them into equivalence classes. If two value structures are equiv-
alent, they must be value structures over the same set; and if one is
trivial, normal, universal, limited, or separative, then so is the other.

If f is any choice function over I, an equivalent ranking 〈K, R〉
over I may be derived thus: let K be the set of all i in I such that i is
in f{i}, and let iRj (for i and j in K) iff i is in f{i, j}.

If 〈K, R〉 is any limited ranking over I, an equivalent choice
function f over I may be derived thus: for any subset X of I, let fX be
the set of all R-maximal elements of X ∩ K (and empty if X ∩ K is
empty). Note that if the given ranking had not been limited, the
derived f would not have been a genuine choice function.

If 〈K, R〉 is any ranking over I, an equivalent nesting $ over I may
be derived thus: let $ contain just those subsets of K such that for no
j in the subset and i outside it does iRj hold.

If $ is any separative nesting over I, an equivalent ranking 〈K, R〉
over I may be derived thus: let K be the union <$ of all sets in $,
and let iRj (for i and j in K) iff there is no set in $ that contains j but
not i. Note that if the given nesting had not been separative, the
derived ranking would not have been equivalent to the nesting.

If $ is any nesting over I, an equivalent indirect ranking 〈V, R, f〉
over I may be derived thus: let V be $, let vRw (for v and w in V ) iff
v is included in w, and let f(i), for any i in I, be the set of all members
of V that contain i.

If 〈V, R, f〉 is any indirect ranking over I, an equivalent nesting $
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may be derived thus: let $ be the set of all superspheres of members
of V.

If $ is any nesting over I, an equivalent closed nesting $9 may be
derived thus: let $9 be the set of all unions <S of subsets S of $.

Finally, if 〈V, R, f〉 is any indirect ranking over I, an equivalent
linear indirect ranking 〈V9, R9, f9〉 over I, may be derived thus: let
V9 be a subset of V such that, for any v in V, there is exactly one w
in V9 such that vRw and wRv; let R9 be the restriction of R to V9;
and let f9(i), for any i in I, be f(i) ∩ V9.

We can sum up our equivalence results as follows. Say that one
class of value structures is reducible to another iff every value structure
in the first class is equivalent to one in the second class. Say that two
classes are equivalent iff they are reducible to each other.

(1) The following classes are equivalent:

all nestings,
all indirect rankings.

(2) The following classes are equivalent; and they are reducible to
the classes listed under (1), but not conversely:

all rankings,
all separative nestings,
all separative indirect rankings.

(3) The following classes are equivalent; and they are reducible to
the classes listed under (2) and (1), but not conversely:

all choice functions,
all limited rankings,
all limited nestings,
all limited indirect rankings.

(4) Parts (1)–(3) still hold if we put ‘closed nesting’ throughout in
place of ‘nesting’, or if we put ‘linear indirect ranking’ throughout in
place of ‘indirect ranking’, or both.

(5) Parts (1)–(4) still hold if we restrict ourselves to the normal
value structures of each kind, or to the universal value structures of
each kind.
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So the fundamental decision to be taken is not between our four
kinds of value structures per se. Rather, it is between three levels of
generality: limited, separative, and unrestricted. Once we have de-
cided on the appropriate level of generality, we must use some class
of value structures versatile enough to cover the chosen level; but it
is a matter of taste which of the equivalent classes we use.

IX. FRAMES

Suppose that an interpretation is to be based, at our actual world, on
a given value structure of some kind. Suppose that the truth sets of
the sentence letters also are given. To what extent is the interpretation
thereby determined? First, we have the truth sets of all non-deontic
sentences – that is, of all truth-functional compounds of sentence
letters. Second, we have the actual truth values of all non-iterative
deontic sentences – that is, of all truth-functional compounds of
sentences of the forms O(A/B) and P(A/B), where A and B are non-
deontic, together perhaps with non-deontic sentences. But there we
stop, for we know nothing about the truth conditions of O(-/-) and
P(-/-) at non-actual worlds. Hence we do not have the full truth sets
of the non-iterative deontic sentences. Then we do not have even
the actual truth values of iterative deontic sentences. (Apart from
some easy cases, as when a deontic sentence happens to be a truth-
functional tautology.)

To go on, we could stipulate that the interpretation is to be based
at all worlds on the given value structure. But that would be too
rigid. Might not some ways of evaluating worlds depend on matters
of fact, so that the value structure changes from one world to another?
What we need, in general, is a family of value structures – one for
each world. Call this a frame. A frame might indeed assign the same
value structure to all worlds – then we call it absolute – but that is
only a special case, suited perhaps to some but not all applications of
dyadic deontic logic.

We have four kinds of frames. A choice function frame 〈fi〉iεI over a set I
assigns a choice function fi to each i in I. A ranking frame 〈Ki, Ri〉i{I over
I assigns a ranking 〈Ki, Ri〉 to each i in I. A nesting frame 〈$i〉i{I over I
assigns a nesting $i to each i in I. An indirect ranking frame 〈Vi, Ri, fi〉i{I
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over I assigns an indirect ranking 〈Vi, Ri, fi〉 to each i in I. (I ignore
mixed frames, which would assign value structures of more than one
kind.) A frame is trivial, normal, universal, limited, separative, closed, or
linear iff every value structure that it assigns is so. An interpretation
over I is based on a frame over I iff, for each world i in I, the interpre-
tation is based at i on the value structure assigned to i by the frame.
Given that an interpretation is to be based on a certain frame, and
given the truth sets of the sentence letters, the interpretation is deter-
mined in full.

Two frames are equivalent iff any interpretation based on either one
is based also on the other, and that is so iff both are frames over the
same set I and assign equivalent value structures to every i in I. One
class of frames is reducible to another iff every frame in the first class is
equivalent to one in the second. Two classes of frames are equivalent
iff they are reducible to each other. Then we have reducibility and
equivalence results for frames that are just like the parallel results for
single value structures.

X. VALIDITY

A sentence is valid under a particular interpretation over a set I iff it is
true at every world in I; valid in a frame iff it is valid under every
interpretation based on that frame; and valid in a class of frames iff it
is valid in all frames in that class. Let us consider six sets of sentences,
defined semantically in terms of validity in classes of frames. The
sentences in each set are just those that we would want as theorems
of dyadic deontic logic if we decided to restrict ourselves to the
frames in the corresponding class, so we may call each set the logic
determined by the corresponding class of frames.

CO: the sentences valid in all frames.
CD: the sentences valid in all normal frames.
CU: the sentences valid in all universal frames.
CA: the sentences valid in all absolute frames.
CDA: the sentences valid in all absolute normal frames.
CUA: the sentences valid in all absolute universal frames.
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The six logics differ: by restricting ourselves to the normal, uni-
versal, or absolute frames we validate sentences that are not valid in
broader classes. But the logics do not change if, holding those restric-
tions fixed, we also restrict ourselves to the separative frames, the
limited frames, or the frames over finite sets; or to the indirect ranking
frames, linear indirect ranking frames, nesting frames, closed nesting
frames, ranking frames, or choice function frames. By these latter
restrictions we validate no new sentences.

For instance, take any sentence A that does not belong to the logic
CO, not being valid in all frames. Then in particular, by our equiva-
lence results, it is invalid under some interpretation v b based on a
nesting frame 〈$i〉i{I. Now define 〈$*i 〉i{I* and v b* as follows: (1) for
each i in I, let Di, be a conjunction of all the subsentences or negated
subsentences of A that are true (under v b) at i; (2) let I* be a subset
of I that contains exactly one world from each nonempty vDib; (3) for
any subset S of I, let *S be the set of all i in I* such that vDib overlaps
S; (4) for each i in I*, let $*i be the set of the *S’s for all S in $i ; and
(5) let v b* be an interpretation based on 〈$*i 〉i{I*, which is a nesting
frame, such that whenever B is a sentence letter, vBb* is vBb ∩ I*. It
may then be shown (see [8], Section 6.2, for details) that whenever
C is a subsentence of A, vCb* is vCb ∩ I*. Since that is so for A itself,
A is invalid under v b*. Further, I* is finite: it contains at most 2n

worlds, where n is the number of subsentences of A. So we do not
validate A by restricting ourselves to the class of nesting frames over
finite sets, the broader class of limited nesting frames, the still broader
class of separative nesting frames, or any other class equivalent to one
of these. Exactly the same proof works for the other five logics; we
need only note that if 〈$i〉i{I is normal, universal, or absolute, then so
is 〈$*i 〉i{I*.

As a corollary, we find that our six logics are decidable. The
question whether a sentence A belongs to one of them reduces, as
we have seen, to the question whether A is valid in the appropriately
restricted class of nesting frames over sets with at most 2n worlds, n
being the number of subsentences of A; and that is certainly a decid-
able question.
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2 For any fixed C, we can regard O(-/C) and P(-/C) as a pair of monadic deontic
operators. R1–R3 and A1–A3, in which the fixed C figures only as an inert index,
constitute an axiom system for Lemmon’s weak deontic logic D2 (see [5], [6]) for
each such pair. D2 falls short of the more standard deontic logic D for the pair by
lacking the theorem O(Á/C); nor should that be a theorem since it is false in case
of vacuity and some instances of O(-/C) are vacuous. Had we used O'(-/-) and
P'(-/-) we would still fall short of D: in case of vacuity we would then have
O'(Á/C), but we would lose the instances of A3. Rather we would have the logic
K for each pair, as in the basic conditional logic of Chellas [1].

XI. AXIOMATICS

We may axiomatize our six logics as follows. For CO take the rules
R1–R4 and the axiom schemata A1–A8.2 For CD add axiom A9;
for CU add A10 and A11; for CA add A12 and A13; for CDA add
A9, A12, and A13; and for CUA add A10, A12, and A13.

R1. All truth-functional tautologies are theorems.
R2. If A and A ⊃ B are theorems, so is B.
R3. If A ; B is a theorem, so is O(A/C) ; O(B/C).
R4. If B ; C is a theorem, so is O(A/B) ; O(A/C).
A1. P(A/C) ; ; O(; A/C).
A2. O(A & B/C) ;.O(A/C) & O(B/C).
A3. O(A/C) ⊃ P(A/C).
A4. O(Á/C) ⊃ O(C/C).
A5. O(Á/C) ⊃ O(Á/B ∨ C).
A6. O(A/B) & O(A/C). ⊃ O(A/B ∨ C).
A7. P('/C) & O(A/B ∨ C). ⊃ O(A/B).
A8. P(B/B ∨ C) & O(A/B ∨ C). ⊃ O(A/B).
A9. O(Á/Á).
A10. A ⊃ O(Á/A).
A11. O(Á/A) ⊃ P('/P('/A)).
A12. O(A/B) ⊃ P('/;O(A/B)).
A13. P(A/B) ⊃ P('/;P(A/B).

These axiom systems for CO, CD, CU, CA, CDA, and CUA
have been designed to use as many as possible of the previously
proposed axioms discussed in [2], [4], and [9]. To establish soundness
and completeness, we need only check that our axiom systems are
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equipollent to those given in [8], Section 6.1, for the ‘V-logics’ V,
VN, VTU, VA, VNA, and VTA, respectively; for those logics, in
a definitional extension of our present language, are known to be
determined by the appropriately restricted classes of separative closed
nesting frames (there called systems of spheres). Our CO and CD are
equipollent also to their namesakes in [7] and [9], respectively.

XII. COMPARISONS AND CONTRASTS

It is an easy task now to compare the four previous treatments listed
at the beginning. I include also my treatment of CO in [7], although
CO is presented there only as a minimal logic for counterfactuals,
without mention of its deontic reinterpretation.

A. Hansson [4]. (We take only the final system DSDL3.) Language:
operators with the truth conditions of our O9(-/-) and P9(-/-); iter-
ation prohibited; truth-functional compounding of deontic and non-
deontic sentences also prohibited. Semantic apparatus: universal lim-
ited rankings. (The relation of these to choice functions is studied in
Hansson [3].)

B. Føllesdal and Hilpinen [2]. Language: operators with the truth con-
ditions of our O9(-/-) and P9(-/-); iteration not discussed. Semantic
apparatus: semiformal; essentially our universal choice functions. It is
suggested that the best worlds where a circumstance holds are those
that most resemble perfect worlds. That improves the analogy, oth-
erwise merely formal, with counterfactuals construed as true (as in
my [7] and [8]) iff the consequent holds at the antecedent-worlds that
most resemble our actual world. But I feel some doubt. Lilies that
fester may smell worse than weeds, but are they also less similar to
perfect lilies?

C. Van Fraassen [9]. Language: O(-/-) and P(-/-); iteration permit-
ted. Semantic apparatus: normal linear indirect ranking frames. These
are motivated in the first of our two ways: values realized at worlds
are ranked, not whole worlds with all their values lumped together.
The idea may be that values are too diverse to be lumped together;
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but if so, are they not also too diverse to be ranked? (Van Fraassen
may agree, for in [10] he has since developed a pluralistic brand of
deontic logic meant to cope with clashes of incomparable values.)
The need for non-separative indirect rankings does not seem to me
to have been convincingly shown.

D. Lewis [8]. Language: operators with the truth conditions of all
four of ours; iteration permitted. Semantic apparatus: separative closed
nesting frames, with normality, universality, and absoluteness consid-
ered as options; ranking frames also are mentioned by way of moti-
vation. It is argued that more than limited frames are needed, since
infinite sequences of better and better worlds are a serious possibility.

E. Lewis [7]. Language: one operator, with the truth conditions of
our O9(-/-); iteration permitted. Semantic apparatus (three versions):
(α) partial choice function frames; (β) nesting frames; and (γ) ranking
frames.
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