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IX

Recursive Constructions

Alabado sea la infinita
Urdimbre de los efectos y de las causas
(Borges)

In the first few sections of this chapter we shall develop some important recur-
sive construction methods which will be applied to mutually orthogonal Latin
squares, pairwise balanced designs, and in particular block designs.

81. Product Constructions

In this section, we consider some product constructions. The first two of these
concern difference matrices and are due to Jungnickel (1979) and Shrikhande
(1964), respectively; the simple proofs are left to the reader. We note that
Shrikhande’s result generalises Lemma 1.9.6.

1.1 Lemma. Let A= (&;) be a(g, k; 1)-difference matrix and B= (by;) an
(h, k; w)-difference matrix over the (additively written) respective finite groups
G and H. Then the k Augh-matrix

is a(gh, k; Au)-difference matrix over @ H, where m= Ag andh= uh. B

1.2 Lemma. Let A be an OA(k, g) with entries in a finite group G and let
D=(j(=1..K,j=1...,09)) be a(g, k;L)-difference matrix

608



81. Product constructions 609

over G= {yi, ..., yg}. Then the matrix & D defined by

A® D=

is an OA,,, (kK, gg).!

If E is a(g, k, »)-difference matrix, then & D is a (g, kK, gA1')-difference
matrix. In particular, the Kronecker product of two generalised Hadamard
matrices(VII1.3.4) is a generalised Hadamard matri@

1.3 Example. The existence of3, 3; 1)- and(3, 6; 2)-difference matrices (see
Theorem VI11.3.14) implies that of €8, 18; 6)-difference matrix ove¥.s x Zg.
More generally, we obtai3, 3x; 1)-difference matrices for all = 2'3/ with

j =i — 1. All these difference matrices are generalised Hadamard matrices.

1.4 Definition. Let (A, o), (B, x) be quasigroups (see Definition VI11.4.10).
Their direct productis defined as the s&t x B with the operatiord defined

by

(1.4.a) (a,byO@,b):=@oad,bxb).

1.5 Lemma. Let(A, o) and(A, o’) be orthogonal quasigroups, and i@, ),
(B, %) be orthogonal quasigroups too. Then the direct prodgétso) x (B, x)

and (A, o) x (B, ') are orthogonal quasigroups. IfA, o) and (B, x) are
idempotent, thenA, o) x (B, %) is also idempotentl

The proof is straightforward. Again MacNeish’s theorem (1.7.7.b) follows im-
mediately; furthermore

(1.5.a) N*(gh) > min{N*(g), N*(h)}.
For the sake of completeness we mention the following connection between

guasigroups and Steiner triple systems.

1 Note that this would be the Kronecker product of matrices ifiere written multiplicatively.
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1.6 Observations. Define abinary operationon the point set of anS(2,3;v)
by

(1.6.a) aob=c ifaxband{a, b,c}isaline
(1.6.b) aoa=a foralaeV.

Then(V, o) is an idempotent quasigroup with the properties

(1.6.c) Xoy=YyoX,
(1.6.d) Xo(xoy)=y forallx,yeV.

Conversely, every finite idempotent quasigroup satisfying (1.6.c) and (1.6.d)
determines asTShy the rule:x, y, zare on a line ifix #y andxo y =z

1.7 Lemma. Let (V, o) and (W, %) be idempotent quasigroups which satisfy
(1.6.c, d) Then(V, o) x (W, %) has the same properties

The proof is straightforward.

1.8 Corollary.
(1.8.a) uveB®@® =>ueB3). 1
Next we mention analogous properties of Steiner quadruple systems.

1.9 Observations.Let anSQSbe given. Define a ternary operatidnon the
point setV by

(1.9.a) f(x,y,2:=u if|{X,y,z}|] =3 and{x, vy, z u}is ablock
(1.9.b) X, y)=T1TXy,x)=f(y,x,x):=y forallx,yeV.

Then f has the properties

(1.9.0) fx,y,2 = f(y,x,2) = f(X,2Y),
(1.9.d) fx,y, f(X,y,2)=2z forallx,y,zeV,

and the equation
(1.9.¢) f(a,b,x)=c

has a unigue solutior for all a, b, c € V. Conversely, every ternary algebra
with these three properties determines 3QShy the following rule. Four
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distinct pointsa, b, ¢, d are on a block ifff (a, b, ¢) = d. If (V, f) and(W, g)
are such ternary algebras, then their direct product, defined in the obvious way,
has the same properties. Hence

(2.9.9) u,ve S34 =uve S@3G 4.

Note that 2e S(3, 4) (two points, no blocks), and that a ternary operatiom a
2-set, satisfying (1.9.b), has all the properties of 1.9. Hence (1.9.f) specializes to

(1.9.9) 2-5(3,4) € S3,4).

In view of Hanani’s theorem stating th&t3,4) = 2N \ 6N, (1.9.f) is a very
weak result; see 810 for a proof of Hanani’s theorem.

1.10 Remark. These examples may be generalised to the idea of applying

universal algebra to combinatorial structures; cf. Ganter (1976a), Evans (1975),
Quackenbush (1975). A nice introductory paper on this subject was given by
Evans (1979).

Next we shall use difference matrices and orthogonal arrays for product con-
structions of difference families, as well as the other way round.

1.11 Proposition. Let k be the order of an affine plane. Furthermore, let
A = (aj) be an OAk, k) over S= N'i. Moreover, letD = (Dq,..., Ds)
andE = (Ey,..., E) be difference families in the groups G and @ith
parametergv, k, A) and (v, k, A'), respectively, say D= {di1, ..., dik} and

Ej = {€j1,.... e} fori € Nj and j € Nj. Then there is gvv’, k, A1')-
difference family in Gb G'.

Proof. We may assume that the ldstolumns ofAare(1,1,..., D7, ...,
(k, Kk, ..., k)T. We omit thesek columns and get & x k(k — 1)-matrix B =
(bij). Now let the desired difference family consist of the following base
blocks:

A’ copies of{(di1, 0), ..., (dik, 0)} for eachi € N3;

2 copies of{ (0, €j1)}, ..., (0, ejx)} for eachj € Nj;

one copy of{(di1, €jb,,), - - . » (dik. €jb,,)} for eachn € NK ¥
and each paifi, j) € N§ x Ni.

The somewhat lengthy though not difficult verification of this construction is
left to the reader; cf. Jungnickel (1978
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1.12 Corollary. With notation as irV11.5.3, for prime powers k we have
(1.12a) veD)(kk) and v e Dy(k) = v €DK,
in particular

(1.12b) v,v e Dk) = vv' € D). &

1.13 Examples.(a) Letg andq+ 1 be prime powers ande N. Then there

is a((9?+q+ D", g+ 1, 1)-difference family in(Zqz,4:1)"- The caser = 1

is just a Singer difference set, see Theorem VI.1.10. Note that the result also
follows from Lemma VII.5.5 ifq® + q + 1 is also a prime power (e.g. for

g = 2, 3,8), but not forq = 4, 7, 16, 31, 127.

(b) Letv = q; ... g, be the prime power factorisation ofand assume
g=1mod6 fori=1,...,n

Then there is a(v, 3, 1)-difference family inEA(qy) @ ... @ EA(Q,), by
(VII.5.4.a) and Proposition 1.11.

(c) Letk be a prime power and assume that each fagtiorthe prime power
factorisation ofv is congruent to 1 mokilk — 1) and sufficiently large.
Then, by Wilson’s Theorem VII.6.6 and Corollary 1.12, there i@ 2k, 1)-
difference family. The existence of difference families for given. and all
sufficiently largev satisfying the necessary condition (VI1.1.9.b) is an unsettled
question.

1.14 Proposition. Assume the existence of & k, 1)-difference familyD =
(D, ..., Ds)in G and of both &g, k, AA")-difference familfe = (Eg, ..., E)
and a(g, k, 1)-difference matrix A= (aj) in G'. Then there is &gv, k, A1")-
difference familyF in G @ G'.

Proof. As base blocks of take
{0} x E; forjeNj
and
{(di1,a1)), ..., (G, aj)} forall (i, j) e N§ x NI,

whereD; ={di1, ..., dik}. Then it is easily checked th&t is a (gv, k, AL')-
difference family; cf. Jungnickel (19781
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1.15 Examples.(a) Proposition 1.14 and Lemma VIII.3.10 yield alternative
proofs for Examples 1.13.(b), (c). An alternative proof of Example 1.13.(a) will
be given a little later.

(b) Using Proposition 1.14, Lemma VI11.3.10 and Wilson’s Theorem VI1.6.6,
we obtain the existence of @, k, A)-difference family whenever admits a
prime power factorisation

(1.15.a) v=mq02...0n

with A(gi — 1) = 0 (modk(k — 1)), where theg; (i = 1, ..., n) are sufficiently
large.

(c) Assume thak or k — 1 divides 2.. Then there exists @, k, 1)-difference
family whenever each factay in the prime power factorisation af satisfies
the condition

(2.15.b) A(gi — 1) = 0(modk(k — 1)).

This follows from Lemma 1.1 (witlh’ = 1), together with Lemma VII1.3.10.
Thus, for example, we obtain (compare with Examples VII1.5.4)

(1.15.c) v € D1(3) N D2(4) N Ds(6) N Dg(7),
whenevelg = 1(mod6 fori =1,..., m;

(1.15.d) v € Dy(5) N D3(6),

whenevelg = 1 (mod 10) fori = 1,...,n;

(1.15.e) v € D3(7) N D4(8),

wheneveilg = 1(mod14 fori =1,...,n;

(1.15.) v € Da(9),

whenevelg = 1 (mod 18) fori =1,...,n.

(d) Lett,n e Nand 4 — 1 be a prime power. Then
(1.15.9) (4t — 1" € Di_1(2t — 1).

This result follows by using a Paley difference set (Theorem VI.1.12), and is a
special case of (c).

(e) Thereis @91, 10, 1)-difference setitZgy; (Theorem VI.1.10). Also there are
(13, 13; 1)-difference matrices (Lemma VI11.3.10), and, 14; 2)-difference
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matrices (Theorem VIII.3.14). Thus there is%l, 10; 2)-difference matrix in
Zg1 by Lemma 1.1. Hence by an easy induction,

(1.15.n) 91" € D»1(10) for everyn e N.

1.16 Exercises.(a) Show the existence ¢£33", 12, 2"~1)-difference families
and of(16M31", 6, 2M)-difference familiegm, n € N).

(b) Assume thati® + ... + q + 1 is a prime power. Show that, fore N,

@+ ...4+9+D"eD, @+ ... +q+Dwithai =g 2+ ... +q+1,
@@+ 4+ . +q+D)"eDu@+ ... +q+Dwitha =g+ ... +q+1

In a certain sense, Propositions 1.11 and 1.14 are complementary. In 1.11 one
uses information ok and in 1.14 information og. Proposition 1.11 has the
advantage of allowing the combination(f k, 1)-difference families foi > 1
without enlarging the.-value. In Proposition 1.14 we used difference matrices

to construct difference families. The converse is done in the following construc-
tion; cf. Jungnickel (1979).

1.17 Proposition. Assume the existence afia g, A)-difference family over G
and of a TOk; g] with a parallel class. Then there existg@a k; 1)-difference
matrix over G.

Proof. The existence of a parallel class allows us to assumethat., 1),

..., (g,...,0)7 are columns of atDA(g, k; 1) corresponding to the given
TD[k; g]. As in the proof of Proposition 1.11, we drop these columns and obtain
a(k x g(g — 1))-matrix B = (bmy) overNy. Let D; = (diy, ..., dig) be the

i -th base block in the give¢v, g, A)-difference familyD = (D4, ..., Ds) and
replace each enttyy, of B by dip,,,. This yields & x g(g — 1)-matrix A;. Put

A= (AlA; ... AD),

where 0 denotes k x A-zero matrix. Now consider rowls andl of A. The
difference 0 occurg times from the zero matrix used. As the submatrixBof
determined by rowk andl contains in its columns each pair with distinct en-
tries precisely once, we obtain the differemge— di,, (8 # y) from A; exactly
once, by our construction. A3was &v, g, A)-difference family(A1 Az . .. An)
yields each non-zero element@fexactlyx times from rowsh andl. &
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Note thats = % =A g(”gjll), hence the column number éfissglg—1) + A =
v, as it must be.

1.18 Examples.(a) Letq be a prime power and assume the existence of a
TD[k; q + 1] with a parallel class. Then there existSa + q + 1, k; 1)-
difference matrix inZqz 4.1 by Singer's Theorem VI1.1.10.

(b) There arg15, 7; 3)-, (21, 5; 1)-, (40, 13; 4)-, and(57, 8; 1)-difference ma-
trices in the cyclic groups of the respective orders. The reader is asked to
check this.

(c) Letq be a prime power and &6 be a group of ordeq + 1. Then there
isa(q+ 1,q; g — 1)-difference matrix oveliG. To see this, use the trivial

(g + 1, 9,9 — 1)-difference setG \ {0}. Note that this yields non-abelian
difference matrices too (though of moderate size; the maximum feasible value
of k is g2 — 1 by Corollary VI11.3.7).

It is worthwile to state the following consequence of Proposition 1.17.

1.19 Corollary. Assume the existence of@ g, 1)-difference family. Then
(1.19.a) ge TD(K) = v € TDK).

In particular,

(1.19.b) gq+1eTDK) = q*+q+1eTD(Kk) forprime powers q
Thus

(1.19.c) 21 TD(®),
(1.19.d) 57 TD(),
(1.19.e) 273 TD(18).

Proof. Use Lemma 1.1 together with (1.7.15.a) and Corollary VI111.3.8. The
particular examples follow from 1.18.(al

The values given in (1.19.c, d, e) improve those following from MacNeish’s
Corollary 1.7.8 and give the best result for the numbers 57 and 273 known to
date. For 21, the better result 21TD(7) is known, see Corollary VII1.3.17.
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1.20 Exercises.(a) Try to generalise Proposition 1.17 by using @, [k; g]

with a parallel class. Show that this is possible under the additional assumption
k(u — 1) < au. Use this to show the existence @f + 1, g% g2 — q)- and of
(9+1, 2g; 2(q — 1))-difference matrices in any group of ordg# 1, whenever

g is a prime power.

(b) Let G be any group of ordeg and assume the existence oT B, [k; g].
Show the existence of @, k; gi)-difference matrix ove(s.

Hint: Construct the correspondir@d, (k, g) on the symbol seB.

(c) Prove the following strengthening of the construction given in Example
1.18.(c) which is due to Colbourn and Kreher (1996): Assume the existence of
anOA, (k, g) with at leastr constant columns. Then, over any group of order
g+1,a(g+ 1 k; A(g — 1))-difference matrix exists. In particular, over any
group of ordeg + 1, a(q + 1, g + 1, g — 1)-difference matrix exists provided
thatq is a prime power, cf. Jungnickel (1995b).

1.21 Remarks. (a) A recent study of quasigroups, their connections to various
types of designs and the corresponding spectra is due Bennett (1989) who also
has an extensive bibliography on this area of research. Regarding the application
of universal algebra to designs, we mention two further interesting papers,
namely Ganter and Metz (1977) and Ganter and Werner (1975).

(b) Further recursive constructions for cyclic difference families and cyclic
designs were given by Colbourn and Mathon (1980), Colbourn and Colbourn
(1980b, 1984), Jimbo and Kuriki (1983), Grannell and Griggs (1986), Mathon
(1987), Jimbo (1993) and Buratti (1997a, ¢, 1998c). Narayani and Blanchard
(1995) gave a new composition theorem for (in general non-cyclic) difference
families; a generalisation of their approach can be found in Ray-Chaudhuri and
Zhu (1992).

(c) Regarding cyclic Steiner systems witk 3 (cf. 8111.9), the case of cyclic
Steiner quadruple systems has found particular interest, see §VIII.10.

(d) Evans (1989) gave a partial converse of the construction of a cyclic
(9 + q + 1, k; 1)-difference matrix from a cyclic Singer difference set and
aTD[k; g + 1] mentioned in Example 1.18.

(e) Colbourn and Kreher (1996) gave some new recursive constructions for dif-
ference matrices with # 1, usingPBD's, OA's and finite fields as ingredients.
They also provided a table on the largest known size dafsan 1)-difference
matrix in the ranges < 32 andAx < 30. For a larger table of this kind, see
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81V.11.4 of Colbourn and Dinitz (1996a). Further recursive constructions for
difference matrices and difference families are due to Buratti (1998a).

In this section we have seen how closely related the concepts of difference
families and difference matrices are. The corresponding interaction between
pairwise balanced designs and transversal designs will be of paramount impor-
tance in the recursive constructions of designs.

§2. Use of Pairwise Balanced Designs

We shall present some important recursive constructions, in particular for
PBD's andTD's. We use Hanani’s notation (cf. 1.2.19).

21 Lemma.Letg e TD(k+n)and kk+1,...,k+ n € K; also, let
O0<g <gfori=1,...,n.Then

(21a) kg+gi+...+ 01 € GD(K,{g, 01, ..., 0}
g B(K U {gﬂ gl, ) gn})

Proof. Deleteg — g1, ..., 9 — O, points from the lash point classes of a
TD[k+n;g]. W

2.2 Lemma.Letge TD(k+n)andkk+1,...,k+n,g+1,g:+1,...,
Oh+1eK;0<gi <gfori=1...,n.Then

(2.2.a) kg+01+...+ 0 +1e B(K).
Proof. Proceed as in Lemma 2.1 and use (1.6.5m).
2.3 Theorem. If v € B(L) and L € B(K), thenv € B(K).

Proof. LetD = (V, {By,..., By}, €) be anS(2, L; v). By hypothesis, there
arePBD’sD; = (B;, {Ci1, ..., Cip }, €) with |C;,| € K for all i, . Then

(V,{Cij:i eNljeNT ) €)

is the desiredPBD. Wilson (1972a) calls this procedure “breaking up blocks”.
|
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2.4 Corollary.
(2.4.a) B(B(K)) = B(K) foreach KC N.

Note that B®) = B({1}) = {1}, and that the usual conventidne B(K) for
all K € Nis reasonable.

Proof. Since (A, {A}, €) is a trivial S(2, L, |A]) for any finite setA with
|Al € L, we havel C B(L) for eachL C N; in particularB(K) € B(B(K)).
By Theorem 2.3, we also ha®B(K)) € B(K). &

2.5 Lemma. If v € S (t, K) and K € S,(t, L) (for notation sed.3.3), then
v e S,(t L). Similarly,

(25.a) GD, (K, M) = GD,(B(K), M). m

The proofs are straightforward generalisations of the previous one. Note that
K andL may be infinite subsets of.

2.6 Lemma.

(2.6.a)  GD,(K, B(K, ) C B(K, &),
(2.6.0)  GDu(K,B(K,2) —1)+1C B(K, A),
(2.6.c)  GD,(K,GD;, (K, N)) € GD, (K, N).

Proof. In aGD;,[K, GDy, (K, N); v], say (V, B, I), form aGD,[K, N; |G|]
on each point clas§, say(G, Ag, |). Then

(V,B+;AG,|>

is aGD,[K, N; v]. This proves (2.6.c). (2.6.a) is a special case. In order to
prove (2.6.b), introduce a new poist on the point classe& and form an
S.(2, K, |G| + 1) on each seG U {oo}. This proves (2.6.b)m

2.7 Observation. The mappingB : 2 — 2% which is defined by

(2.7.a) K+ B(K), forallK CN,
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is aclosure operatari.e. it has the properties

(2.7b) K CB(K),
(2.7c) K CB(L)= B(K) < B(L),

and hence
(2.7.d) B(B(L)) = B(L)

forall K, L € N.
AsubseK C Nis calledclosedf B(K) = K or, in case of ambiguity-closed
The concept of closed subsetshivas introduced by Wilson (1972a, b). It is

a very important tool which considerably simplified previous constructions of
Hanani and other authors.

2.8 Examples.(a) For eactK € N andx € N, the setB(K, 1) is closed.

(b) The sets &+ ({1, 3}, 12N+ {1, 4}, 20N + {1, 5} are closed. The next
lemma generalises this example.

2.9 Lemma. Let K € N be given and define, 8 by

(2.9.a) a:=gcdk —1:k e K},
(2.9.b) B :i=gcdkk —1): ke K}.

Then

(2.9.0) A(v —1) = 0(moda),
(2.9.d) Arv(v — 1) = 0(modp)

are necessary conditions for the existence of a2, ; v). Let L be the set of
all v € N satisfying these two conditions. Then L is closed.

Proof. The necessity of (2.9.c) and (2.9.d) follows by counting the flag®8)
with p# C andc, p | B for a given pointc, and the triplegx, y, B) with X £y
andx, y | B. Note that Corollary 1.2.11 is the special case= {k}.



620 IX. Recursive constructions

In order to prove that is closed, leD = (V, B, €) be anS(2, L; v). Choose
a pointd € V and count the flagép, B) with p#d andd, p | B. Thus

v—1=Y (B|-1),
Be(d)
Av—1= )" A(B|-1) = 0(moda),
Be(d)

by (2.9.¢). Now count the triple&, y, B) with x £ y andx, y | B. Thus

vw—1)= )Y |BI(B| -1,

BeB
(@ —1) = Z A|B|(|B| — 1) = 0(modp),

BeB
by (2.9.d), sincéB| € L.Hencev e L. &

As an example consider the setl86- {1, 6, 16, 21}. Note that 3WN + {1, 6}
is not closed; cf. Exercise VIII.1.9.

2.10 Definition. Let TD*(k) be the set ofj € N for which aTD[k; g] with

a parallel class exists. By Lemma VI11.4.18BD*(k) is also the set off € N

for whichk — 2 mutually orthogonal idempotent quasigroups of omglexist.

The following theorem is a special case of a theorem of Bose, Shrikhande and
Parker (1960); see also Theorem X.1.1.

2.11 Theorem. The set TD(k) is closed for every k N.

Proof. It suffices to prove the following assertion. L@, B, €) be aPBD.
Assume thgt on eéach blodk € B there are two idempotent orthogonal quasi-
groups(B, o), (B, ). Defineo andx* onV as follows.

(2.11.a) xox=xxx=x foralxeV
and
(2.11.b) xOy::xgy, x*y::xi’y,

if x £y andB is the block througlx andy. Then(V, o), (V, %) are orthogonal
idempotent quasigroups. The proof is left to the reader.

Another proof of the theorem will be given in 8X. 1
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2.12 Examples.We use Theorem 2.11 and Lemma 2.1 witk= 1, 2. Thus

50=7-7+1¢€ B({7,8}) € TD*(7),
54=7-7+5¢€ B({5,7,8}) C TD*(5),
70=7-9+7 ¢ B({7,8,9}) C TD*(7),
57 € B(8) € TD*(8),
253 € B({16,13}) < TD*(11), cf. (VIIL.5.6.b) withq = 4.

2.13 Proposition.
(2.13.a) B({3,4}) = BNo+1{1,3H\({6}.

Proof. 6 ¢ B({3, 4}) follows from (1.8.4.a). ‘€” now follows from (2.9.c, d).

If ge K:=B({3,4}) andge TD(4), g1 € KU{0},andg; < g,then3+q; €
K. This follows with Lemma 2.1, sincK is closed. Note that ¢ B(3) C K,
and thaty € TD(4) if g # 2(mod 4, by (1.7.8.a). The table

g 3 4 7 9 12 13
01 0,1,3 10,1,34 0,1,3,4 |0,1,3,4,7 1|0,1,34,7,9(0,1,3,4,7,...,13
390+ 01(9,10,1212 13,115,162, . .., 2527, ..., 31, 3436,..., 43,4539, ..., 43,46, ..., 52

yields some small values &f, but leaves the gaps 18, 19, and 33. ButI®e K
by (1.6.11.a), and 1& K by (1.5.13.a). Now it is easily seen that eacl= 0
or 1 (mod 3) withx > 52 has a representation= 3g + g; with g, g, = 0
or 1 (mod 3),g # 2(mod4 and 7< g; < g. Hence the assertion follows by
induction. m

The proof would be even shorter if one used result (1.7.9.b).

83. Applications of Divisible Designs

3.1 Definition. A GD,[K, G]is a divisible desigrD with paramete#., block
sizes inK <€ N and point class sizes i@, and aGD;, [K] is a GD,[K, N].
Without loss of generality, we may assume thatthe point &% ..., v} CN,
and that the (non-empty) point classes @i Go, . .., Gs, where

(3.1.a) xeGj, yeG; and i<j = x<y.
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Thes-tuple(Gay, ..., Gg) is called thepoint class lis{(or, briefly, theclass lis}
of D. We putg, := |Gj| fori =1,...,5s, henceZis:l g = v. Thepoint class
type(or, briefly, theclass typgof D is thes-tuple

(3.1b) (g ...,gs) € N°.

If some of theg; (i = 1,...,s) are equal, say

(31C) O1=...=0u #0u+1 = - = Gurtar 7 Jortort1 = - - -

we also write
t

@1d)  (gf....g") with > aj=s
i=1

instead of (3.1.b). Thus every pairwise balanced design has clasdtypand
everyGD;, [K, g; sg] has class typeg®).

If Disanincidence structure (in most applicatio®BD or aGDD) on the point
setV = {1, 2, ..., v}, then aweightingof V is just a mappinagv: V — Ng.

With these conventions, we can state the following general composition theorem
due to Wilson (1972b).

3.2 Theorem. LetD = (V, B, G) be a GO [H] with class list(Gy, .. ., Gs),
and letw: V — Ny be a weighting. For each block B- {x, ..., Xp} of D,
assume the existence of a (K ], sayDg, with class typéw (x1), . . ., w(Xn)).
Then there exists a GR[K], sayE, with class type

(3.2.a) ( D w), .Y w(X)).

xeGy XeGsg

Note: Wilson call® therecipeand theDg theingredientgfor the construction).

Proof. Let the incidence matrix dDg be

M (X1, B)
M (X2, B)

(32b) M=
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where eachVl (X, B) is aw(X;) x bg-matrix such thaM (x;, BYM(x;, B)T is
diagonal and (x;, B)M (x;, B)T = pJfori #j.If w(x) = 0, thenthe matrix
M(x;, B) is omitted. Now replace each=2 ag in the incidence matrixax g)
of D by the auxiliary matrixM (x, B) defined by (3.2.b), and each-Da,g by
aw(X) x bg-zero-matrix. In this case write

Then the matrix
M (X1, B]_) ............ M (X1, Bb)

M, By) oo M (X,, Bp)
describes the desirgsD, ,[K]. ®

3.3 Remark. We may w.l.0.g. assume that eabh(x, B) 0 has a 1 in the
upper left corner. Ik = 1 = 1, thenE has a subspace which is isomorphic to
D. (Consider only the upper left corners of all auxiliary matrices.)
3.4 Corollary. If Dis an S(2, H; v), thenE has class type

(w(X1), ..., w(Xy)). W
3.5 Corollary. LetD be a GQ[H, G; v] (seel.6.1) and suppose that mk

GD, (K, m) for each ke H. Then there is a GR,[K, mG; mv], sayE. Here
mG:={mx:x e G} € N.

Proof. Use Theorem 3.2 witlw (x) = m for eachx € V. Or directly: replace
the 1’'s in each column of the incidence matrix@fby the partial matrices
Mg, ..., Mg (see Proposition 1.6.2) of the incidence matrix of the respective
GD,[K,m;mK. m

3.6 Corollary. LetD be a GQ[K, G; v] and suppose that

(3.6.a) me TD,(I) forl := maxK.

Then there is a GP,[k, mG; mv].

Proof. Condition (3.6.a) is equivalent to requiring thah € GD,(k, m) C
GD, (K, m) for eachk € K. Now apply Corollary 3.5.1
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This special case of Theorem 3.2 is used very often, especially incade The

most important applications of transversal designs are those given in Lemmas
2.1, 2.2, and Corollary 3.6. Note that MacNeish’s Theorem 1.7.7 is a special
case of Corollary 3.6.

Next we shall present Hanani’s recursion lemma which proved to be extremely
successful for his existence theorems.

3.7 Definition and Notation. ForK € N andm, 1 € N defineRy , to be the
set of allx € N such that

(3.7.a) mx € GD, (K, m).

Fori = 1write RY instead oRy ;, and ifK = {k} write k for {k}. Our definition
means

(3.7b) mRY, =GD, (K, m).
Wilson’s notation forRY' is NG(m, K). By Lemma 2.5, we get
(3.7.¢) RE = RBik)a

Letus remark that Hanani (1975) determined the Bftscompletely fok = 3,
and Brouwer, Schrijver and Hanani (1977) did the saméfer4, cf. §9.

3.8 Examples.(a) Rb = B(K, 1) = S.(2, K), see Notation 1.2.19.

(b) Re ;= RET = {x e N': (k — 1)x € GD(k, k — 1)}

={xeN:(k—1x+1le Bk}, see (1.6.5.d).
The notationRy is customary, see e.g. Wilson (1972a). We chose the notation
Ry, introduced in 3.7 as a straightforward generalisation.

(©)geTDi(k) <= ke R},.

In general, our knowledge about the sB8, is unsatisfactory. By Corollary
VII.6.7, the setdB(K, 1) andRy are infinite formaxX = k > 1. The following
fundamental lemma is implicit in Hanani’s work.

3.9 Main Lemma (Hanani's Recursion Lemma). If K, G € N and m,A,
u €N, then

(3.9.2) m-GDi(RY,.G) S GDu (K, mG).
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Proof. Put H:=RY . By hypothesis, MH=GD,(K,m). Now apply
Corollary 3.5. 1

These theorems and lemmas are fairly general, and hence they need some
explanation by examples. The following results are due to Wilson (1972b).

3.10 Corollary. The sets R, are closed. In particular the sets(B, 1) and
Ry are closed.

Proof. Inthe Main Lemma tak& = {1}, A = 1. Then
m GD(RE,M, 1) = mB(REYM) C GD, (K, m).
By (3.7.b),
B(RY,) CR{, m
3.11 Lemma. Let K # {1} be a non-empty subset Bf Put
(3.11.a) L :=B(K,),
and suppose that the positive integer m has the property
(3.11.b) x=1(modm) forallx € L.
Define YC Ng by
(3.11c) L=B(K,A\)=mY+1
Then, with the conventidhe GD, (X, Y) forall X,Y € N,
(3.11.d) GD(RE,.Y) =Y.
Proof. By the Main Lemma 3.9,
m GD(RY ;. Y) = GD, (K, mY) = GD, (K, B(K,2) — 1).

With (2.6.b) and (3.11.c) the assertion follows, as trividflc GD(RY ,,Y).
|

Note that the casm = 1 is already contained in (2.6.b) and (2.5.a).



626 IX. Recursive constructions

3.12 Exercise.If q is a prime power, then

(312a) qeRY,
(312b) g+1eRNRy1=RITNRY,.

3.13 Lemma. If m,r € R and me TD(k), then mre R.

Proof. By hypothesis, there is@D[k, k — 1; r (k — 1)]. By Corollary 3.6, we
obtainmr(k — 1) € GD[k, m(k — 1), mr(k — 1)]. Hencemr(k — 1) + 1 €
B({k, m(k — 1) + 1}) = B(k), which implies the assertiorl

3.14 Example. Let D; be anS(2, 6; 31). Since 5 TD(6), Corollary 3.6 im-
plies the existence of @D[6, 5; 155], i.e. of anS(2, 6; 156) containing a sub-
space of order 31. Hence there i<G®(6) with 156 points and class type
125- (1) + (31). Furthermore, there is BD[6; 31], hence &D(6) with 186
points and class type 1241) + 2 - (31). Moreover, 126 B(6), by VII1.9.5.
Now letD be the projective planeG(2, 125, and letN be a subset of an oval,
0 < IN| < 126. Weight the point s&t of D as follows.

31 ifxeN

w(X) = .
1 otherwise
If B is ablock ofD, then|BN N| < 2. If

0
BANN=1{1,
2

there is aGD(6) with class type

126- (1),
125- (1) + (31),
124- (1) + 2 (31).

Hence the hypothesis of Theorem 3.2 is satisfied, and Corollary 3.4 yields
15751+ 30- N3% € GD(6, {1, 31}) C B(6); i.e.

(3.14.2) [30N + 1]i5% c B(6).
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3.15 Notation. Let Fx (u) denote the set of positive integers for which there
exists anS(2, K ; v) with a subspace of order. For instance

Fk (0) = Fk (1) = B(K),
Fc(k)=B(K),

Few=¢ ifugB(K),

GD(K,u), GD(K,u—1) + 1 € Fx (u).

Doyen and Wilson (1973) proved that
(3.15.a) Fs(u) ={u}U{[6N+{1,3}]5,,; forue6N+ {1 3}.

We shall prove this result in Theorem 11.3. Wilson (1972b) calls the following
theorem the “Adjunction Theorem”.

3.16 Theorem.LetD = (V,B,G) be aGOK]andde N. If
(3.16.a) |G|+ d e Fk(d) for each point class Gf D,
then, for each Ge G,

(3.16.b) |V|+d e Fx (|G| +d) € B(K).

Proof. LetU be a set ofl new points. IfG € G, constructars(2, K; |G| +d)

on G U U, with block setBg, such thatU is the point set of a fixed sub-
space (independent &). Note that this is always possible, since any subspace
of a PBD may be replaced by any other subspace of the same order. Then
B + > s Ba is the block set of the desire®(2, K; V| +d). &

3.17 Examples.

88=4-21+4 €< B({4,25}) = B(4), cf. Example VII.3.2.(a)
366=6-60+ 6 € Fs(66) € B(6), cf. Exercise VIII.1.10
85=5.16+5¢€ F5(21) C B(5), cf.(1.2.19.b)

84. Applications of Hanani's Lemmas

Most of the following examples are due to Hanani and Wilson.



