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1 An introduction to
empirical modeling

1.1 Introduction

In an attempt to give some idea of what empirical modeling is all about, we begin the dis-
cussion with an epigrammatic demarcation of its intended scope:

Empirical modeling is concerned with the parsimonious description of observ-
able stochastic phenomena using statistical models.

The above demarcation is hardly illuminating because it involves the unknown terms sto-
chastic phenomenon and statistical model which will be explained in what follows. At this
stage, however, it suffices to note the following distinguishing features of empirical (as
opposed to other forms of) modeling:

(a) the stochastic nature of the phenomena amenable to such modeling,
(b) the indispensability of the observed data, and
(c) the nature of the description in the form of a statistical model.

The primary objective of empirical modeling is to provide an adequate description of
certain types of observable phenomena of interest in the form of stochastic mechanisms
we call statistical models. A statistical model purports to capture the statistical system-
atic information (see sections 2–3), which is different from the theory information (see
section 4). In contrast to a theory model, a statistical model is codified exclusively in
terms of probabilistic concepts and it is descriptive and anti-realistic in nature (see
chapter 10 for further discussion). The adequacy of the description is assessed by how
well the postulated statistical model accounts for all the statistical systematic informa-
tion in the data (see section 5). In section 6 we provide a preliminary discussion of certain
important dimensions of the constituent element of empirical modeling, the observed
data.

Empirical modeling in this book is considered to involve a wide spectrum of inter-
related procedures including:

(i) specification (the choice of a statistical model),
(ii) estimation (estimation of the parameters of the postulated statistical model),
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(iii) misspecification testing (assessing the validity of the probabilistic assumptions of
the postulated statistical model), and

(iv) respecification (an alternative choice of a statistical model).

As argued below, these facets of modeling are particularly involved in the case of
observational data. In the case of experimental data the primary focus is on estimation
because facets (i) and (iv) constitute the other side of the design coin and (iii) plays a sub-
sidiary role.

A quintessential example of empirical modeling using observational data is consid-
ered to be econometrics. An important thesis adopted in this book is that econometrics
differs from mainstream statistics (dominated by the experimental design and the least-
squares traditions), not so much because of the economic theory dimension of model-
ing, but primarily because of the particular modeling issues that arise due to the
observational nature of the overwhelming majority of economic data. Hence, we inter-
pret the traditional definition of econometrics “the estimation of relationships as sug-
gested by economic theory” (see Harvey (1990), p. 1), as placing the field within the
experimental design modeling framework. In a nutshell, the basic argument is that the
traditional econometric textbook approach utilizes the experimental design modeling
framework for the analysis of non-experimental data (see Spanos (1995b) for further
details).

1.1.1 A bird’s eye view of the chapter

The rest of this chapter elaborates on the distinguishing features of empirical modeling
(a)–(c). In section 2 we discuss the meaning of stochastic observable phenomena and why
such phenomena are amenable to empirical modeling. In section 3, we discuss the rela-
tionship between stochastic phenomena and statistical models. This relationship comes
in the form of statistical systematic information which is nothing more than the formal-
ization of the chance regularity patterns exhibited by the observed data emanating from
stochastic phenomena. In section 4 we discuss the important notion of statistical ade-
quacy: whether the postulated statistical model “captures” all the statistical systematic
information in the data. In section 5 we contrast the statistical and theory information.
In a nutshell, the theoretical model is formulated in terms of the behavior of economic
agents and the statistical model is formulated exclusively in terms of probabilistic con-
cepts; a sizeable part of the book is concerned with the question of: What constitutes sta-
tistical systematic information? In section 6 we raise three important issues in relation to
observed data, their different measurement scales, their nature, and their accuracy, as they
relate to the statistical methods used for their modeling.

The main message of this chapter is that, in assessing the validity of a theory, the
modeler is required to ensure that the observed data constitute an unprejudiced witness
whose testimony can be used to assess the validity of the theory in question. A statistical
model purports to provide an adequate summarization of the statistical systematic
information in the data in the form of a stochastic mechanism that conceivably gave rise
to the observed data in question.

2 An introduction to empirical modeling



1.2 Stochastic phenomena, a preliminary view

As stated above, the intended scope of empirical modeling is demarcated by the stochas-
tic nature of observable phenomena. In this section we explain intuitively the idea of a
stochastic phenomenon and relate it to the notion of a statistical model in the next
section.

1.2.1 Stochastic phenomena and chance regularity

A stochastic phenomenon is one whose observed data exhibit what we call chance regular-
ity patterns. These patterns are usually revealed using a variety of graphical techniques.

The essence of chance regularity, as suggested by the term itself, comes in the form of
two entwined characteristics:

chance: an inherent uncertainty relating to the occurence of particular outcomes,
regularity: an abiding regularity in relation to the occurence of many such out-
comes.

T  : the term chance regularity is introduced in order to avoid possible
confusion and befuddlement which might be caused by the adoption of the more com-
monly used term known as randomness; see chapter 10 for further discussion.

At first sight these two attributes might appear to be contradictory in the sense that
chance refers to the absence of order and “regularity” denotes the presence of order.
However, there is no contradiction because the disorder exists at the level of individual
outcomes and the order at the aggregate level. Indeed, the essence of chance regularity
stems from the fact that the disorder at the individual level creates (somehow) order at
the aggregate level. The two attributes should be viewed as inseparable for the notion of
chance regularity to make sense. When only one of them is present we cannot talk of
chance regularity.

Any attempt to define formally what we mean by the term chance regularity at this
stage will be rather pointless because one needs several mathematical concepts that will
be developed in what follows. Instead, we will attempt to give some intuition behind the
notion of chance regularity using a simple example and postpone the formal discussion
until chapter 10.

Example
Consider the situation of casting two dice and adding the dots on the sides facing up. The
first crucial feature of this situation is that at each trial (cast of the two dice) the outcome
(the sum of the dots of the sides) cannot be guessed with any certainty. The only thing
one can say with certainty is that the outcome will be one of the numbers:

{2,3,4,5,6,7,8,9,10,11,12},

we exclude the case where the dice end up standing on one of the edges! All 36 possible
combinations behind the outcomes are shown in table 1.1. The second crucial feature of
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the situation is that under certain conditions, such as the dice are symmetric, we know
that certain outcomes are more likely to occur than others. For instance, we know that
the number 2 can arise as the sum of only one set of faces: {1,1} – each die comes up
with 1; the same applies to the number 12 with faces: {6,6}. On the other hand, the
number 3 can arise as the sum of two sets of faces: {(1,2), (2,1)}; the same applies to
the number 11 with faces: {(6,5),(5,6)}. In the next subsection we will see that this line
of combinatorial reasoning will give rise to a probability distribution as shown in table
1.3.

Table 1.1. Outcomes in casting two dice

1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

At this stage it is interesting to pause and consider the notions of chance regularity as
first developed in the context of such games of chance. This is, indeed, the way proba-
bilities made their first appearance. Historically, probabilities were introduced as a way
to understand the differences noticed empirically between the likely occurrence of
different betting outcomes, as in table 1.1. Thousands of soldiers during the medieval
times could attest to the differences in the empirical relative frequencies of occurrence
of different events related to the outcomes in table 1.1. While waiting to attack a certain
town, the soldiers had thousands of hours with nothing to do and our historical records
suggest that they indulged mainly in games of chance like casting dice. After thousands
of trials they knew intuitively that the number 7 occurs more often than any other
number and that 6 occurs less often than 7 but more often than 5. Let us see how this
intuition was developed into something more systematic that eventually led to probabil-
ity theory.

Table 1.2 reports 100 actual trials of the random experiment of casting two dice and
adding the number of dots turning up on the uppermost faces of the dice. A look at the
table confirms only that the numbers range from 2 to 12 but no real patterns are appar-
ent, at least at first sight.

Table 1.2. Observed data on dice casting

23 10 11 5 26 27 10 28 25 11 2 9 9 26 28 24 27 6 25 12
27 28 25 4 26 11 27 10 25 28 7 5 9 28 10 22 27 3 28 10
11 28 29 5 27 23 24 29 10 24 7 4 6 29 27 26 12 8 11 29
10 23 26 9 27 25 28 26 22 29 6 4 7 28 10 25 28 7 29 26
25 27 27 6 12 29 10 24 28 26 5 4 7 28 26 27 11 7 28 23
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In figure 1.1 the data are plotted over the index of the number of the trial. At the first
casting of the dice the sum was 3, at the second the sum was 10, at the third the sum of 11
etc. Joining up these outcomes (observations) gives the viewer a better perspective with
regard to the sequential nature of the observations. N that the ordering of the
observations constitutes an important dimension when discussing the notion of chance
regularity.

Historically, the first chance regularity pattern discerned intuitively by the medieval
soldiers was that of a stable law of relative frequencies as suggested by the histogram in
figure 1.2 of the data in table 1.2; without of course the utilization of graphical techniques
but after numerous casts of the dice. The question that naturally arises at this stage is:

How is the histogram in figure 1.2 related to the data in figure 1.1?

Today, chance regularity patterns become discernible by performing a number of
thought experiments.

Thought experiment 1 Think of the observations as little squares with equal area and
rotate the figure 1.1 clockwise by 90° and let the squares representing the observations
fall vertically creating a pile on the x-axis. The pile represents the well-known histogram
as shown in figure 1.2. This histogram exhibits a clear triangular shape that will be
related to a probability distribution derived by using arguments based on combinations
and permutations in the next sub-section. For reference purposes we summarize this
regularity in the form of the following intuitive notion:

Stochastic phenomena, a preliminary view 5
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[1] Distribution: after several trials the outcomes form a (seemingly) stable law.

Thought experiment 2 Hide the observations following a certain value of the index, say
t540, and try to guess the next outcome. Repeat this along the observation index axis
and if it turns out that it is impossible to use the previous observations to guess the value
of the next observation, excluding the extreme cases 2 and 12, then the chance regularity
pattern we call independence is present. It is important to note that in the case of the
extreme outcomes 2 and 12 one is almost sure that after 2 the likelihood of getting a
number greater than that is much higher, and after 12 the likelihood of getting a smaller
number is close to one. As argued below, this type of predictability is related to the regu-
larity component of chance known as a stable relative frequencies law. Excluding these
extreme cases, when looking at the previous observations, one cannot discern a pattern
in figure 1.1 which helps narrow down the possible alternative outcomes, enabling the
modeler to guess the next observation (within narrow bounds) with any certainty.
Intuitively, we can summarize this notion in the form of:

[2] Independence: in any sequence of trials the outcome of any one trial does not influ-
Independence: ence and is not influenced by that of any other.

Thought experiment 3 Take a wide frame (to cover the spread of the fluctuations in a 
t-plot such as figure 1.1) that is also long enough (roughly less than half the length of the

6 An introduction to empirical modeling
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horizontal axis) and let it slide from left to right along the horizontal axis looking at the
picture inside the frame as it slides along. In the case where the picture does not change
significantly, the data exhibit homogeneity, otherwise heterogeneity is present; see
chapter 5. Another way to view this pattern is in terms of the average and the variation
around this average of the numbers as we move from left to right. It appears as though
this sequential average and its variation are relatively constant around 7. The variation
around this constant average value appears to be within constant bands. This chance
regularity can be intuitively summarized by the following notion:

[3] Homogeneity: the probabilities associated with the various outcomes remain
Homogeneity: identical for all trials.

N that in the case where the pattern in a t-plot is such so as to enable the modeler
to guess the next observation exactly, the data do not exhibit any chance pattern, they
exhibit what is known as deterministic regularity. The easiest way to think about
deterministic regularity is to visualize the graphs of mathematical functions from ele-
mentary (polynomial, algebraic, transcendental) to more complicated functions such as
Bessel functions, differential and integral equations. If we glance at figure 1.1 and try to
think of a function that can describe the zig-zag line observed, we will realize that no
such mathematical function exists; unless we use a polynomial of order 99 which is the
same as listing the actual numbers. The patterns we discern in figure 1.1 are chance regu-
larity patterns.

1.2.2 Chance regularity and probabilistic structure

The step from the observed regularities to their formalization (mathematization) was
prompted by the distribution regularity pattern as exemplified in figure 1.2. The formal-
ization itself was initially very slow, taking centuries to materialize, and took the form of
simple combinatorial arguments. We can capture the essence of this early formalization
if we return to the dice casting example.

Example
In the case of the experiment of casting two dice, we can continue the line of thought that
suggested differences in the likelihood of occurrences of the various outcomes in
{2,3,4,5,6,7,8,9,10,11,12} as follows. We already know that 3 occurs twice as often as 2 or
11. Using the same common sense logic we can argue that since 4 occurs when any one of
{(1,3), (2,2), (3,1)} occurs, its likelihood of occurrence is three times that of 2. Con-
tinuing this line of thought and assuming that the 36 combinations can occur with the
same probability, we discover a distribution that relates each outcome with a certain like-
lihood of occurrence shown below in figure 1.3; first derived by Coordano in the 1550s.
As we can see, the outcome most likely to occur is the number 7; it is no coincidence that
several games of chance played with two dice involve the number 7. We think of the like-
lihoods of occurrence as probabilities and the overall pattern of such probabilities asso-
ciated with each outcome as a probability distribution; see chapter 3.

Stochastic phenomena, a preliminary view 7



Table 1.3. The sum of two dice: a probability distribution

outcomes 2 3 4 5 6 7 8 9 10 11 12

probabilities

The probability distribution in table 1.3 represents a probabilistic concept formulated by
mathematicians in order to capture the chance regularity in figure 1.1. A direct compari-
son between figures 1.2 and 1.3 confirms the soldiers’ intuition. The empirical relative
frequencies in figure 1.2 are close to the theoretical probabilities shown in figure 1.3.
Moreover, if we were to repeat the experiment 1000 times, the relative frequencies would
have been even closer to the theoretical probabilities; see chapter 10. In this sense we can
think of the histogram in figure 1.2 as an empirical realization of the probability distrib-
ution in figure 1.3 (see chapter 5 for further discussion).

Example
In the case of the experiment of casting two dice, the medieval soldiers used to gamble on
whether the outcome is an odd or an even number (the Greeks introduced these concepts
at around 300 BC). That is, soldier A would bet on the outcome being A5{3,5,7,9,11}
and soldier B on being B5{2,4,6,8,10,12}. At first sight it looks as though soldier B will
be a definite winner because there are more even than odd numbers. The medieval sol-
diers, however, knew by empirical observation that this was not true! Indeed, if we return
to table 1.3 and evaluate the probability of event A occurring, we discover that the sol-
diers were indeed correct: the probability of both events is ; the probability distribution
is given in table 1.4.

Table 1.4. The sum of two dice: odd and even

outcomes A5{3,5,7,9,11} B5{2,4,6,8,10,12}

probabilities

We conclude this subsection by reiterating that the stochastic phenomenon of casting
two dice gave rise to the observed data depicted in figure 1.1, which exhibit the three
different forms’ chance regularity patterns:

1
2

1
2

1
2

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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[1] Distribution (triangular), [2] Independence, and [3] Homogeneity.

For reference purposes, it is important to note that the above discernible patterns, consti-
tute particular cases of chance regularity patterns related to three different broad cate-
gories of probabilistic assumptions we call Distribution, Dependence, and Heterogeneity,
respectively; see chapter 5. The concepts underlying these categories of probabilistic
assumptions will be defined formally in chapters 3–4.

A digression – Chevalier de Mere’s paradox
Historically, the connection between a stable law of relative frequencies and probabilities
was forged in the middle of the 17th century in an exchange of letters between Pascal and
Fermat. In order to get a taste of this early formulation, let us consider the following his-
torical example.

The Chevalier de Mere’s paradox was raised in a letter from Pascal to Fermat on July
29, 1654 as one of the problems posed to him by de Mere (a French nobleman and a
studious gambler). De Mere observed the following empirical regularity:

the probability of getting at least one 6 in 4 casts of a die is greater than , but

the probability of getting a double 6 in 24 casts with two dice is less than .

De Mere established this empirical regularity and had no doubts about its validity
because of the enormous number of times he repeated the game. He was so sure of its
empirical validity that he went as far as to question the most fundamental part of
mathematics, arithmetic itself. Reasoning by analogy, de Mere argued that the two
probabilities should be identical because one 6 in 4 casts of one die is the same as a
double 6 in 24 casts of two dice since, according to his way of thinking: 4 is to 6 as 24 is
to 36.

The statistical distribution in table 1.4 can be used to explain the empirical regularity
observed by de Mere. Being a bit more careful than de Mere, one can argue as follows
(the manipulations of probabilities are not important at this stage):

Probability of one double six5 ,

Probability of one double six in n throws5
n
,

Probability of no double six in n throws5
n
,

Probability of at least one double six in n throws512
n
5p,

For n524, p512
24

50.4914039.

It is interesting to note that in the above argument going from the probability of one
double six in one trial to that of n trials we use the notion of independence to be defined
later.

Using a statistical distribution for the case of one die, whose probability distribution is
given in table 1.5, one can argue analogously as follows:

135
362

135
362

135
362
1 1
362

1
36

1
2

1
2
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Table 1.5. One die probability distribution

outcomes 1 2 3 4 5 6

probabilities

Probability of one six5 ,

Probability of one six in n throws5
n
,

Probability of no six in n throws5
n
,

Probability of at least one six in n throws512
n
5q,

For n54, q512
4
50.5177469.

The two probabilities p50.4914039 and q50.5177469 confirm de Mere’s empirical
regularity and there is no paradox of any kind! This clearly shows that de Mere’s empir-
ical frequencies were correct but his reasoning by analogy was faulty.

The chance regularity patterns of unpredictability, which we related to the probability
concept of [2] Independence and that of sameness we related to [3] homogeneity using
figure 1.1, are implicitly used throughout the exchange between Pascal and Fermat. It is
interesting to note that these notions were not formalized explicitly until well into the
20th century. The probabilistic assumptions of Independence and homogeneity
(Identical Distribution) underlay most forms of statistical analysis before the 1920s.

At this stage it is important to emphasize that the notion of probability underlying the
probability distributions in tables 1.3–1.5, is one of relative frequency as used by de Mere
to establish his regularity after a huge number of trials. There is nothing controversial
about this notion of probability and the use of statistical models to discuss questions
relating to games of chance, where the chance mechanism is explicitly an integral part of
the phenomenon being modeled. It is not, however, obvious that such a notion of proba-
bility can be utilized in modeling other observable phenomena where the chance mecha-
nism is not explicit.

1.2.3 Chance regularity in economic phenomena

In the case of the experiment of casting dice, the chance mechanism is explicit and most
people will be willing to accept on faith that if this experiment is actually performed,
the chance regularity patterns [1]–[3] noted above, will be present. The question which
naturally arises is:

Is this chance regularity conceivable in stochastic phenomena beyond games of
chance?

In the case of stochastic phenomena where the chance mechanism is not explicit, we
often:

(a) cannot derive a probability distribution a priori using some physical symmetry
argument as in the case of dice or coins, and

15
62

15
62

15
62
11
62

11
62

1
6

1
6

1
6

1
6

1
6

1
6
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(b) cannot claim the presence of any explicit chance mechanisms giving rise to the
observations.

Using these observations our first task is to decide whether the underlying phenomenon
can be profitably viewed as stochastic and our second task is to utilize the chance regular-
ity patterns discerned in such data so as to choose an appropriate statistical model.
Hence, discerning chance regularity patterns from data plots and relating them to the
corresponding probability theory concepts will be a crucial dimension of the discussion
that follows.

A number of observable phenomena in econometrics can be profitability viewed as
stochastic phenomena and thus amenable to statistical modeling. In an attempt to
provide some support for this proposition, consider the time-plot of X-log changes of
the Canadian/USA dollar exchange rate, for the period 1973–1992 (weekly observations)
shown in figure 1.4. What is interesting about the data is the fact that they do exhibit a
number of chance regularity patterns very similar to those exhibited by the dice observa-
tions in figure 1.1, but some additional patterns are also discernible. The regularity pat-
terns exhibited by both sets of observations are:

(a) the arithmetic average over the ordering (time) appears to be constant,
(b) the band of variation around the average appears to be relatively constant.

The regularity pattern in relation to a (possibly) stable relative frequencies law exhib-
ited by the exchange rate data, do not suggest a triangular stable law as in figure 1.2.
Instead:
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(c) the data in figure 1.4 exhibit a certain bell-shaped symmetry (there seems to be as
many points above the average as there are below but the relative frequencies die
out as the value of X moves away from the center to the tails). This regularity can be
seen in the graph of the relative frequencies given in figure 1.5.

How the graphs in figures 1.4 and 1.5 are related will be discussed extensively in
chapter 5, together with a more detailed account of how one can recognize the patterns
(a)–(c) mentioned above.

In addition to the regularity patterns encountered in figure 1.1, it is worth noting that
the data in figure 1.4 exhibit the following regularity pattern:

(d) there seems to be a sequence of clusters of small changes and big changes succeed-
ing each other.

At this stage the reader is unlikely to have been convinced that the features noted
above are easily discernible from t-plots. However, an important dimension of modeling
in this book is indeed how to read systematic information in data plots, which will begin
in chapter 5.

In conclusion, the view adopted in this book is that stochastic phenomena (those
exhibiting chance regularity) are susceptible to empirical modeling, irrespective of
whether the built-in chance mechanism is apparent or not. Indeed, an important task for
the modeler is to identify the observable phenomena which can be profitably viewed as
stochastic phenomena. The question of whether there exists such a mechanism or not is
only of metaphysical interest.
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1.3 Chance regularity and statistical models

The discussion so far has identified the presence of chance regularity patterns in stochas-
tic phenomena. Motivated by the desire to utilize the information conveyed by chance
regularity patterns, probability theory proceeded to formalize them by developing
(inventing) related (mathematical) probabilistic concepts; in the next few chapters we
will introduce a number of probability theory concepts. In particular, the stable relative
frequencies law regularity pattern will be formally related to the concept of a probability
distribution; see tables 1.3–1.5. In the case of the exchange rate data the apparent stable
relative frequencies law in figure 1.5 will be related to distributions such as the Normal
and the Student’s t, which exhibit the bell-shaped symmetry (see chapter 5). The unpre-
dictability pattern will be formally related to the concept of Independence ([1]) and the
sameness pattern to the Identical Distribution concept ([2]). The regularity patterns
(a)–(b), exhibited by the exchange rate data, will be formally related to the concept of
stationarity (see chapters 5 and 8), and (d) will be related to non-linear dependence (see
chapter 6). It is important to emphasize that chance regularity patterns, such as those
noted above, comprise the lifeblood of statistical modeling because their proper utiliza-
tion constitutes the essence of empirical modeling.

The bridge between chance regularity patterns and probabilistic concepts, transforms
the intuitive cognitive pattern recognition into statistical (systematic) information. In an
attempt to render the utilization of the statistical systematic information easier for mod-
eling purposes, the probabilistic concepts purporting to formalize the chance regularity
patterns are placed into three broad categories:

(D) Distribution, (M) Dependence, and (H) Heterogeneity.

This basic taxonomy is designed to provide a logically coherent way to view and utilize
statistical information for modeling purposes. These broad categories can be seen as
defining the basic components of a statistical model in the sense that every statistical
model can be seen as a smooth blend of ingredients from all three categories. The
smoothness of the blend in this context refers to the internal consistency of the assump-
tions making up a statistical model. The first recommendation to keep in mind in empir-
ical modeling is

1 A statistical model is just a set of (internally) compatible probabilistic assumptions
from the three broad categories: (D), (M), and (H).

R : to those knowledgeable readers who are not convinced that this is indeed the
case, we mention in passing that distribution assumptions are sometimes indirect in the
form of smoothness and existence of moments conditions; see chapter 10.

The statistical model chosen represents a description of a tentative chance mechanism
with which the modeler attempts to capture the systematic information in the data (the
chance regularity patterns). A statistical model differs from other types of models in so
far as it specifies a situation, a mechanism or a process in terms of a certain probabilistic
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structure, which will be formally defined in chapters 2–4. Mathematical concepts such as
a probability distribution, independence, and identical distribution constitute forms of
probabilistic structure. Indeed, the main objective of the first part of the book is to intro-
duce many additional concepts which enable the modeler to specify a variety of forms of
probabilistic structure, rich enough to capture, hopefully all, chance regularity patterns.
The statistical model is specified exclusively in terms of such probabilistic assumptions
designed to capture the systematic information in observed data.

The examples of casting dice, discussed above, are important not because of their
intrinsic interest in empirical modeling but because they represent examples of a simple
stochastic phenomenon which will play an important role in the next few chapters. The
stochastic phenomenon represented by the above examples is referred to generically as a
random experiment and will be used in the next three chapters (2–4) to motivate the basic
structure of probability theory. The observable phenomenon underlying the exchange
rate data plotted in figure 1.4 cannot be considered as a random experiment and thus we
need to extend the probabilistic framework in order to be able to model such phenomena
as well; this is the subject matter of chapters 6–8.

In view of the above discussion, successful empirical modeling has two important
dimensions:

(a) recognize the chance regularity patterns as exhibited by the observed data, and
(b) capture these patterns by postulating appropriate statistical models.

The first requires a skill on behalf of the modeler to detect such patterns using a
variety of graphical techniques. Indeed, it will be impossible to overestimate the impor-
tance of graphical techniques in empirical modeling. This brings us conveniently to the
second recommendation in empirical modeling:

2 Graphical techniques constitute an indispensable tool in empirical modeling!

If we return momentarily to the data in table 1.2, there is no doubt that the reader will
have a hard time recognizing any chance regularity patterns in the data set. A glance at
data plots in figures 1.1 and 1.4 provide an overall picture of the structure of both data
sets that would require more than a thousand words to describe. This merely confirms
the natural perceptual and cognitive capacities of the human brain; humans are able to
recognize, classify, and remember visual patterns much more efficiently than numbers or
words. Chapter 5 brings out the interplay between chance regularity patterns and pro-
babilistic concepts using a variety of graphical displays.

Capturing the statistical systematic information in the data presupposes a mathemat-
ical framework rich enough to model whatever patterns are detected. It is through prob-
ability theory that chance regularity has been charmed into compliance. In this sense the
interplay between modeling and probability theory is not a one way street. For example,
as late as the early 20th century the pattern of dependence was rather nebulous and as a
consequence the corresponding mathematical concept was not as yet formalized. In view
of this, there are no good reasons to believe that there are no chance regularity patterns
which we cannot recognize at present but will be recognized in the future. As more pat-
terns are detected, additional probabilistic assumptions will be devised in order to
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formalize them and thus enrich probability theory as a modeling framework. Because of
the importance of the interplay between observable patterns and formal probabilistic
concepts, in figure 1.6 we present this relationship in a schematic way: chance regularity
patterns are formalized in the form of probabilist concepts, these in turn are categorized
into the basic taxonomy, and then utilized to postulate statistical models which (hope-
fully) capture the statistical systematic information; no effort will be spared in relating
chance regularity patterns to the corresponding probabilistic concepts throughout this
book.

The variety and intended scope of statistical models are constrained only by the scope
of probability theory (as a modeling framework) and the training and the imagination of
the modeler. There is no such thing as a complete list of statistical models which the
modeler tries out in some sequence and chooses the one that looks the least objection-
able. Moreover, empirical modeling is not about choosing optimal estimators (from
some pre-specified menu), it is about choosing adequate statistical models; models which
are devised by the modeler in an attempt to capture the systematic information in the
data. In the discussion of statistical models in chapters 2–8 particular attention is paid to
the relationship between observed data and the choice of statistical models. Some of the
issues addressed in the next few chapters are:

(a) What do we mean by a statistical model?
(b) Why should statistical information be coded in a theory-neutral language?
(c) What information do we utilize when choosing a statistical model?
(d) What is the relationship between the statistical model and the features of the data?
(e) How do we recognize the statistical systematic information in the observed data?
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We conclude this section by emphasizing the fact that the statistical systematic
information in the observed data has to be coded in a language which is free from any
economic theory concepts. Probability theory offers such a theory-neutral language
which will be utilized exclusively in the specification of statistical models. As shown in
chapters 6–7, statistical models as specified in this book, do not rely on any theory-
based functional forms among variables of interest; instead they are specified exclu-
sively in terms of statistical relationships based on purely statistical information. The
codification of statistical models exclusively in terms of statistical information is of
paramount importance because one of the primary objectives of empirical modeling
is to assess the empirical validity of economic theories. This assessment can be
thought of as a trial for the theory under appraisal, with the theoretical model as the
main witness for the defence and the observed data as the main witness for the
prosecution. For the data to be an unprejudiced witness, no judge (modeler) should
allow coaching of the main prosecution witness by the defence, before the trial!
Statistical information has to be defined exclusively in terms of concepts which are
free from any economic-theoretical connotations; only then can observed data be
viewed as an independent (and fair) witness for the prosecution. The third
recommendation in empirical model is:

3 Do not allow the observed data to be coached a priori by the theory to be appraised.

The statistical model is viewed initially as a convenient summarization of the systematic
information in the data which exists irrespective of any theory. The fourth recommenda-
tion in empirical modeling is:

4 Statistical model specification is guided primarily by the nature and structure of the
observed data.

1.4 Statistical adequacy

As argued above, the success of empirical modeling is judged by how adequately the pos-
tulated statistical model captures the statistical systematic information contained in the
data. A central theme of this book is that of statistical adequacy and how it can be
achieved in practice, by utilizing several methods including graphical displays (see chap-
ters 5–6) and misspecification testing (see chapter 15). Without a statistically adequate
model which captures the systematic information in the data, no valid statistical infer-
ence is possible, irrespective of the sophistication and/or the potential validity of the
theory!

Statistical inference is often viewed as the quintessential inductive procedure: using a
set of data (specific) to derive conclusions about the stochastic phenomenon (general)
that gave rise to the data (see figure 1.7). However, it is often insufficiently recognized that
this inductive procedure is embedded in a fundamentally deductive premise. The pro-
cedure from the postulated model (the premise) to the inference results (estimation,
testing, prediction, simulation) is deductive; no data are used to derive results on the
optimality of estimators, tests, etc.; estimators and tests are pronounced optimal based
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on a purely deductive reasoning. The deductive component of the statistical inference
reasoning amounts to:

if certain premises are assumed, certain conclusions necessarily follow.

More formally, if we denote the premises by p and the conclusions by q, then the above
form of deductive reasoning takes the form of modus ponens (affirming the antecedent):

if p then q.

In this sense, statistical inference depends crucially on the validity of the premises: postu-
lating a statistical model in the context of which the observed data are interpreted as a
realization of the postulated stochastic mechanism. On the basis of this premise we
proceed to derive statistical inference results using mathematical deduction. Correct
deductive arguments show that if their premises are valid, their conclusions are valid.
Using the observed data in question, the modeler relies on the validity of this deductive
argument in order to draw general inference conclusions from specific data. However, if
the premises are invalid the conclusions are generally unwarranted. In view of this, we
consider the problem of assessing the validity of the postulated statistical model
(misspecification testing) of paramount importance, especially in the case of observa-
tional data. The fifth recommendation in empirical modeling is:

5 No statistical inference result should be used to draw any conclusions unless the sta-
tistical adequacy of the postulated model has been established first.

The first and most crucial step in ensuring statistical adequacy is for the modeler to
specify explicitly all the probabilistic assumptions making up the postulated model;
without a complete set of probabilistic assumptions the notion of statistical adequacy
makes no operational sense. For this reason the next several chapters pay particular
attention to the problem of statistical model specification (probability and sampling
models) to an extent that might seem unnecessary to a traditional textbook econometri-
cian. It is emphasized at this stage that the notation, the terminology, and the various
taxonomies introduced in the next four chapters play an important role in ensuring that
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the nature and structure of the probabilistic assumptions underlying the postulated
model is made explicit and transparent to the modeler.

In the context of the probabilistic reduction approach, departures from the postulated
statistical model are viewed as systematic information in the data that the postulated
model does not account for. The statistical model needs to be respecified in order to
account for the systematic information overlooked by the model postulated initially.
Hence, the procedure in figure 1.7 is supplemented with the additional stages of
misspecification testing and respecification. Figure 1.8 shows the modified procedure
with the notion of a statistically adequate model coming between the estimated model
and statistical inference. As shown in figure 1.8, reaching a statistically adequate model
involves misspecification testing and respecification.

The notion of statistical adequacy is particularly crucial for empirical modeling
because it can provide the basis for establishing stylized facts which economic theory will
be required to account for. A cursory look at the empirical econometric modeling of the
last 50 years or so will convince, even the most avid supporter of the traditional econo-
metric approach, that it does not constitute a progressive research program because it
has not led to any real accumulation of empirical evidence. Separating the statistical and
theoretical models and ensuring the statistical adequacy of the former, will provide a
good starting point for a progressive research strategy where empirical regularities are
established by statistically adequate models (proper stylized facts) and theories are
required to account for them. It is worth reiterating that in this book statistical and theo-
retical information are clearly distinguished in order to avoid any charges of circularity
in implementing this research strategy.
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1.5 Statistical versus theory information*

In an attempt to provide a more balanced view of empirical modeling and avoid any
hasty indictments on behalf of traditional econometricians that “the approach adopted
in this book ignores economic theory,” this section will discuss briefly the role of eco-
nomic theory in empirical modeling (see also Spanos (1986,1995b)).

Economic data are growing at an exponential rate but at the same time when a
modeler attempts to give answers to specific questions he/she often finds that the particu-
lar data needed for the analysis do not exist in the form required. This is symptomatic of
the absence of an adequate econometric methodology which would have played a coor-
dinating role between economic theory and the appropriate observed data. More often
than not, there exists a huge gap between theory-concepts and the data series that are
usually available; the available data often measure something very different. As argued
above this gap arises primarily because of the differences between the experimental-
design circumstances assumed by economic theory, via the ceteris paribus clause, and the
observational nature of the available data; the result of an on-going process with numer-
ous influencing factors beyond the potential control of the modeler. The sixth
recommendation in empirical modeling that one should keep in mind is:

6 Never assume that the available data measure the theory concept the modeler has in
mind just because the names are very similar (or even coincide)!

A striking example is the theoretical concept demand versus the often available data in
the form of quantities transacted; see Spanos (1995b). As a result of this gap, empirical
modeling often attempts to answer theoretical questions of interest by utilizing data
which contain no such information.

As argued in the previous three sections, the statistical systematic information is:

(a) related to the chance regularity patterns exhibited by the observed data,
(b) defined exclusively in terms of probabilistic concepts, and
(c) devoid (initially) of any economic theory connotations.

The clear distinction between statistical and theoretical systematic information consti-
tutes one of the basic pillars of the empirical modeling methodology expounded in this
book; see also Spanos (1986, 1995b, forthcoming). Theory and statistical models consti-
tute distinct entities built on different information, the behavior of economic agents, and
statistical systematic information, respectively. This constitutes a necessary condition for
the statistical model to be used as an unprejudiced witness on the basis of whose testi-
mony the empirical adequacy of the theory model can be assessed.

The theory influences the choice of an appropriate statistical model in two ways. First,
the theory determines the choice of the observed data of interest. Although the choice of
the observed data is theory laden, once chosen, the data acquire an objective existence
which is theory free. The only further influence the theory has on the specification of the
statistical model is that the latter should be general enough to allow the modeler to pose
theoretical questions of interest in its context. Hence, the misspecification testing and

Statistical versus theory information 19



respecification facets of empirical modeling have nothing to do with the theory model;
they are purely statistical procedures determined by the notion of statistical information.
The seventh recommendation in empirical modeling is:

7 No theory, however sophisticated, can salvage a misspecified statistical model.

As argued in chapter 7, the statistical and theory viewpoints provide very different
viewing angles for modeling purposes. These viewing angles are complementary but they
are often used as substitutes with dire consequences; see Spanos (1997a).

A statistically adequate model provides a good summary (description) of the statistical
systematic information in the data but does not constitute the ultimate objective of
empirical modeling. Ultimately, the modeler wants to assess the theory in terms of a sta-
tistically adequate model, as well as to synthesize the statistical and theory models in an
attempt to bestow economic-theoretic meaning and explanatory capability to the statisti-
cal model. Hence, the eighth recommendation to keep in mind in empirical modeling is:

8 The success of empirical modeling is assessed by how skillfully the modeler can syn-
thesize the statistical and theory models, without short-changing either the theoret-
ical or the statistical information!

In order to distinguish between a statistical model, built exclusively in terms of statistical
systematic information, and the synthesis of the theory and statistical models we call the
latter an econometric model (see Spanos (1986)).

1.6 Observed data

In this section we will attempt a preliminary discussion of the constituent element of
empirical modeling, the observed data. Certain aspects of the observed data play an
important role in the choice of statistical models.

1.6.1 Early data

Numerical data have been collected for one reason or another since the dawn of history.
Early data collections, however, were non-systematic and the collected information was
not generally available. The systematic collection of economic data can be dated to the
17th century as a by-product of government activities such as tax and customs collec-
tion, spending and regulating, as well as the desire to quantify certain aspects of govern-
ment activity (see Porter (1995)). For instance, earlier data on income distribution were
simply a by-product of tax data. Towards the end of the 19th century special censuses
were undertaken by (in particular the US) governments in the agricultural and manufac-
turing sectors in order to consider specific questions of interest (see Christ (1985)) Thus,
it should come as no surprise to find out that the data used in the early empirical work in
economics (early 20th century) were mostly data on exports, imports, production and
price (see Stigler (1954, 1962)). Gradually, however, governments began to appreciate the
use of such data in assessing economic performance as well as providing guideposts for
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