Astrophotography for the Amateur

Second edition

MICHAEL A. COVINGTON
Contents

Preface xi
Notes to the reader xiii
Symbols used in formulae xiv

I SIMPLE TECHNIQUES 1

1 Welcome to astrophotography 3
 1.1 The challenge of astrophotography 3
 1.2 Choosing equipment 3
 1.3 Sharing your work with others 5
 1.4 Maintaining balance and enjoyment 7

2 Photographing stars without a telescope 8
 2.1 Stars and trails 8
 2.2 BASIC TECHNIQUE 1: Photographing stars
 without a telescope 10
 2.3 How long can you expose? 10
 2.4 PRACTICAL NOTE: How to approach
 formulae 12
 2.5 Choice of camera and lens 12
 2.6 Slides versus prints 14
 2.7 PRACTICAL NOTE: Getting good color prints 14
 2.8 Getting the most out of your film 15
 2.9 Keeping records 16
 2.10 PRACTICAL NOTE: Film and false economy 18
 2.11 Interpreting your pictures scientifically 19

3 Comets, meteors, aurorae, and space dust 21
 3.1 Comets 21
 3.2 BASIC TECHNIQUE 2: Photographing a bright
 comet 25
 3.3 Meteors 25
 3.4 BASIC TECHNIQUE 3: Photographing a meteor
 shower 26
 3.5 Aurorae 28
 3.6 BASIC TECHNIQUE 4: Photographing the
 aurora borealis 28
 3.7 Zodiacal light, Gegenschein, and
 lunar libration clouds 28
 3.8 All-sky cameras 33

4 The moon 35
 4.1 Lenses and image size 35
 4.2 Using a telephoto lens 35
 4.3 BASIC TECHNIQUE 5: Photographing the
 moon through a telephoto lens 37
 4.4 Determining exposures 38
 4.5 PRACTICAL NOTE: What is a “stop”? 39
 4.6 Afocal coupling to telescopes and
 binoculars 40
 4.7 BASIC TECHNIQUE 6: Photographing the
 moon (afocal method) 43
 4.8 Films and processing 44

5 Eclipses 46
 5.1 Lunar eclipses 46
 5.2 Lunar eclipse dates and times 47
 5.3 Lunar eclipse photography 48
 5.4 Videotaping a lunar eclipse 50
 5.5 BASIC TECHNIQUE 7: Photographing an
 eclipse of the moon 52
 5.6 Solar eclipses – partial and annular 52
 5.7 Eclipse safety 54
 5.8 PRACTICAL NOTE: How eclipse eye injuries
 happen 55
 5.9 BASIC TECHNIQUE 8: Viewing a solar eclipse
 by projection 55
 5.10 Safe solar filters 56
 5.11 Photographing partial solar eclipses 60
 5.12 BASIC TECHNIQUE 9: Photographing a
 partial solar eclipse 60
 5.13 Solar eclipses – total 60
 5.14 Shadow bands and other phenomena 62
 5.15 BASIC TECHNIQUE 10: Photographing a
 total solar eclipse 63
 5.16 Session planning 63
 5.17 Videotaping solar eclipses 63
 5.18 The 1999 total eclipse in Europe 65
9.7 Camera maintenance and repair 158
9.8 Some miscellaneous SLR hints 159
9.9 Other types of cameras 160
9.10 Special astrocameras 161
9.11 Lenses 162
9.12 Lens quality and performance 164
9.13 Lens mounts 165
9.14 Buying lenses 166
9.15 BASIC TECHNIQUE 16: Testing lenses 167
9.16 Lens repair 169
9.17 Choosing a telescope 169
9.18 PRACTICAL NOTE: Does a lower f-ratio give a brighter image? 170
9.19 Telescope quality and performance 171
9.20 BASIC TECHNIQUE 17: Star-testing a telescope 171
9.21 How to clean optics 172
10 Film 174
10.1 How film works 174
10.2 Spectral sensitivity 175
10.3 The characteristic curve 177
10.4 Film speed 179
10.5 Reciprocity failure: theory 180
10.6 Reciprocity failure: measurement 181
10.7 PRACTICAL NOTE: Does film “give up” after a certain amount of time? 184
10.8 Hypersensitization 184
10.9 Graininess and resolution 186
10.10 Some specific films 187
10.11 PRACTICAL NOTE: Film: What’s in a name? 192
10.12 PRACTICAL NOTE: Is “professional” film better? 192
10.13 Bulk loading 193
11 Developing, printing, and photographic enhancement 195
11.1 The darkroom 195
11.2 Developing black-and-white film 196
11.3 Black-and-white printing 201
11.4 PRACTICAL NOTE: Color negatives on black-and-white paper? 203
11.5 Making high-contrast prints 204
11.6 Unsharp masking 205
11.7 Processing color film 206
11.8 PRACTICAL NOTE: Help! The film is scratched! 207
11.9 Slide duplication 207
11.10 Rephotography 210

IV DIGITAL IMAGING 213
12 Computer image enhancement 215
12.1 How computers represent images 216
12.2 Resolution and image size 218
12.3 PRACTICAL NOTE: How images get resized 220
12.4 File compression 220
12.5 File formats 222
12.6 Getting images into the computer 222
12.7 Scanner artifacts 223
12.8 PRACTICAL NOTE: Taking pictures that scan well 224
12.9 The ethics of retouching 224
12.10 Manipulating the characteristic curve 225
12.11 Working with histograms 229
12.12 Manipulating color 229
12.13 Enhancing detail 230
12.14 PRACTICAL NOTE: An example of digital enhancement 231
12.15 Combining images 231
12.16 Printing out the results 231
12.17 Image enhancement theory: spatial frequency 232
12.18 PRACTICAL NOTE: Signal and noise 233
12.19 Convolutions, 1: smoothing 233
12.20 PRACTICAL NOTE: Median filters 236
12.21 Convolutions, 2: sharpening 237
12.22 The Laplacian operator 238
Welcome to astrophotography! This book is for people who want to take pictures of the stars and planets, and, perhaps more importantly, who want to understand how astrophotography works. The earlier chapters contain instructions for beginners, and the later chapters are more like a reference book.

My goal is to show you how to do astrophotography at modest cost, with the equipment and materials an amateur can easily obtain and use. I haven’t covered everything. I’ve concentrated on 35-mm cameras and relatively inexpensive telescopes, 20-cm (8-inch) and smaller. Techniques that require unusual skill or expenditure are mentioned only briefly with references to other sources of information.

Why photograph the sky? Because of the great natural beauty of celestial objects, because your pictures can have scientific value, and, perhaps most importantly, because you enjoy the technical challenge. Astrophotography will never be a matter of just taking snapshots, and Kodak’s old slogan, “You press the button, we do the rest,” certainly doesn’t apply. Astrophotographers push the limits of their equipment and materials, and a good astrophotographer has to know optics and film the way a race-car driver knows engines. There are three main technical challenges:

1. Most celestial objects require magnification; that’s one reason we use telescopes. (Not all objects require magnification; star fields, meteors, and bright comets can be photographed with your camera’s normal lens.)

2. Many celestial objects are faint, requiring long exposures to accumulate light on the film. In fact, astronomical discoveries have been made this way; the Horsehead Nebula and Barnard’s Loop are too faint to see with any telescope, but are not too hard to photograph.

3. Whenever high magnification or long exposures are involved, the rotation of the earth gets in the way by making the sky seem to move continuously. To compensate for this motion, telescopes have equatorial mounts and drive motors. Sometimes the camera rides “piggy-back” on the telescope while taking a picture through its own lens (Fig. 1.2).

Almost everything in this book deals with how to overcome one, two, or all three of these challenges in a particular situation. It’s not always easy; some kinds of astrophotography are much harder than others, and I present the easier techniques first.

Fortunately, you don’t have to master the hardest techniques in order to get impressive pictures. Piggy-backing and moon photography are particularly rewarding even though they require only modest effort and simple equipment. Photographing galaxies is especially hard; so is high-resolution photography of the planets.

1.1 The challenge of astrophotography

1.2 Choosing equipment

Never buy a telescope or camera unless you understand exactly what it will do for you and how it will do it. Always educate yourself first, because the equipment doesn’t take the pictures; you do. Chapter 9 gives detailed advice on choosing cameras and telescopes, but your knowledge should always run ahead of your equipment.

Learn the sky before buying a telescope. It goes without saying that if you can’t point your finger at M31 or the Orion Nebula, you won’t be able to point a telescope at them either. I usually tell young amateur astronomers that they’re not ready for a telescope until they can identify at least five constellations and three
Figure 1.1 The moon photographed at the prime focus of a 12.5-cm (5-inch) f/10 Schmidt-Cassegrain telescope. A half-second exposure on Kodak Technical Pan Film developed in Technidol LC; clock drive running. (By the author)
interesting objects (planets, star clusters, or the like) without a map. Don’t be seduced by computer-controlled telescopes; they save time if you have a busy observing program, but you can’t use them effectively unless you already know the sky.

Full advice for beginning stargazers is beyond the scope of this book, but any of the major magazines (Sky & Telescope, Astronomy, or Astronomy Now) will quickly lead you to all the other sources of information.

Useful books for beginners include Patrick Moore’s The Amateur Astronomer and Liller and Mayer’s Cambridge Astronomy Guide; the latter emphasizes using a camera rather than a telescope, so its point of departure resembles Chapter 2 of this book. More advanced observers should not miss Martinez’ two-volume Observer’s Guide and Burnham’s Celestial Handbook. As a handbook of astronomical science, including astrophysics, I particularly like Fundamental Astronomy, by Karttunen et al., because it doesn’t leave out the mathematics; you can skip the mathematical portions if you like, then go back reread them if you feel the need.

1.3 Sharing your work with others

Once you have some good astronomical photographs, what do you do with them? You could join the legions of amateurs who send their pictures to major astronomy magazines. Unfortunately, your chances of getting a picture published that way are slim; none of mine ever have been! With hundreds of excellent pictures coming in every month, astronomy magazines can print only a few that are truly exceptional.

Instead, look for other ways to share your pictures with your friends and the public. Enter them in local photography contests. Assist the local newspaper with pictures of eclipses and comets. Give slide shows for school children and science clubs. Decorate your home and office with enlargements. Sell prints at art shows. Make Christmas cards. Do anything any other photographer would do, remembering that unlike most people’s, your photographs probe the limits of the universe.
Figure 1.4 An example of very advanced amateur work. The galaxy NGC 253; a 60-minute exposure on hypersensitized Kodak Technical Pan Film with a 14-inch f/7 telescope. (Chuck Vaughn)

Figure 1.5 A picture well worth sharing: the moon rising over Lick Observatory. Richard A. Milewski carefully calculated the position of moonrise to take this picture.
1.4 Maintaining balance and enjoyment

Let me end with an exhortation: remember that we do this because we enjoy it. Like most amateur astronomers, I am in the middle of a thriving career in something else (computational linguistics in my case) and have neither an unlimited budget nor a perfect observing site. But that’s part of the challenge — to make intelligent and creative use of limited resources. Astrophotography is not a competitive sport, the beauty of a picture is not proportional to the difficulty of taking it, and your pictures don’t have to be the best in the world in order to be satisfying. As G. K. Chesterton put it, “Anything worth doing is worth doing badly” — that is, worth doing even when you’re not an expert.