
The aim of this book is to explain the shape of Greek mathemati-
cal thinking. It can be read on three levels: first as a description of
the practices of Greek mathematics; second as a theory of the
emergence of the deductive method; and third as a case-study for
a general view on the history of science. The starting point for
the enquiry is geometry and the lettered diagram. Reviel Netz
exploits the mathematicians’ practices in the construction and let-
tering of their diagrams, and the continuing interaction between
text and diagram in their proofs, to illuminate the underlying
cognitive processes. A close examination of the mathematical use
of language follows, especially mathematicans’ use of repeated
formulae. Two crucial chapters set out to show how mathemati-
cal proofs are structured and explain why Greek mathematical
practice manages to be so satisfactory. A final chapter looks into
the broader historical setting of Greek mathematical practice.

R N is a Research Fellow at Gonville and Caius
College, Cambridge, and an Affiliated Lecturer in the Faculty
of Classics.
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Preface

This book was conceived in Tel Aviv University and written in the
University of Cambridge. I enjoyed the difference between the two,
and am grateful to both.

The question one is most often asked about Greek mathematics is:
‘Is there anything left to say?’ Indeed, much has been written. In the
late nineteenth century, great scholars did a stupendous work in edit-
ing the texts and setting up the basic historical and mathematical
framework. But although the materials for a historical understanding
were there, almost all the interpretations of Greek mathematics offered
before about  were either wildly speculative or ahistorical. In the
last two decades or so, the material has finally come to life. A small but
highly productive international community of scholars has set up
new standards of precision. The study of Greek mathematics today
can be rigorous as well as exciting. I will not name here the individual
scholars to whom I am indebted. But I can – I hope – name this small
community of scholars as a third institution to which I belong, just as
I belong to Tel Aviv and to Cambridge. Again I can only express my
gratitude.

So I have had many teachers. Some were mathematicians, most
were not. I am not a mathematician, and this book demands no know-
ledge of mathematics (and only rarely does it demand some knowledge
of Greek). Readers may feel I do not stress sufficiently the value of
Greek mathematics in terms of mathematical content. I must apo-
logise – I owe this apology to the Greek mathematicians themselves.
I study form rather than content, partly because I see the study of
form as a way into understanding the content. But this content – those
discoveries and proofs made by Greek mathematicians – are both
beautiful and seminal. If I say less about these achievements, it is
because I have looked elsewhere, not because my appreciation of them
is not as keen as it should be. I have stood on the shoulders of giants –
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to get a good look, from close quarters, at the giants themselves. And
if I saw some things which others before me did not see, this may be
because I am more short-sighted.

I will soon plunge into the alphabetical list. Three names must stand
out – and they happen to represent the three communities mentioned
above. Sabetai Unguru first made me read and understand Greek
mathematics. Geoffrey Lloyd, my Ph.D. supervisor, shaped my view of
Greek intellectual life, indeed of intellectual life in general. David Fowler
gave innumerable suggestions on the various drafts leading up to this
book – as well as giving his inspiration.

A British Council Scholarship made it possible to reach Cambridge
prior to my Ph.D., as a visiting member at Darwin College. Awards
granted by the ORS, by the Lessing Institute for European History
and Civilization, by AVI and, most crucially, by the Harold Hyam
Wingate Foundation made it possible to complete graduate studies at
Christ’s College, Cambridge. The book is a much extended and re-
vised version of the Ph.D. thesis, prepared while I was a Research
Fellow at Gonville and Caius College. It is a fact, not just a platitude,
that without the generosity of all these bodies this book would have
been impossible. My three Cambridge colleges, in particular, offered
much more than can be measured.

I owe a lot to Cambridge University Press. Here, as elsewhere, I
find it difficult to disentangle ‘form’ from ‘content’. The Press has
contributed greatly to both, and I wish to thank, in particular, Pauline
Hire and Margaret Deith for their perseverance and their patience.

The following is the list – probably incomplete – of those whose
comments influenced directly the text you now read (besides the three
mentioned already). My gratitude is extended to them, as well as to
many others: R. E. Aschcroft, Z. Bechler, M. F. Burnyeat, K. Chemla,
S. Cuomo, A. E. L. Davis, G. Deutscher, R. P. Duncan-Jones, P. E.
Easterling, M. Finkelberg, G. Freudental, C. Goldstein, I. Grattan-
Guinness, S. J. Harrison, A. Herreman, J. Hoyrup, E. Hussey, P.
Lipton, I. Malkin, J. Mansfeld, I. Mueller, J. Ritter, K. Saito, J. Saxl,
D. N. Sedley, B. Sharples, L. Taub, K. Tybjerg, B. Vitrac, L. Wischik.

 I have mentioned above the leap made in the study of Greek mathematics over the last two
decades. This owes everything to the work of Wilbur Knorr, who died on  March , at
the age of . Sadly, he did not read this book – yet the book would have been impossible
without him.

xii Preface
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 

Abbreviation Work (standard title) Author

de Aedific. de Aedificiis Procopius
Amat. Amatores [Plato]
APo. Analytica Posteriora Aristotle
APr. Analytica Priora Aristotle
Av. Aves Aristophanes
Cat. Categoriae Aristotle
CF On Floating Bodies Archimedes
CS On Conoids and Spheroids Archimedes
DC Measurement of Circle Archimedes
D.L. Lives of Philosophers Diogenes Laertius
EE Ethica Eudemia Aristotle
El. Harm. Elementa Harmonica Aristoxenus
de Eloc. Demetrius on Style Demetrius
EN Ethica Nicomachea Aristotle
Epin. Epinomis [Plato] (Plato?)
Euthd. Euthydemus Plato
Euthyph. Euthyphro Plato
Grg. Gorgias Plato
HA Historia Animalium Aristotle
Hip. Mai. Hippias Maior Plato
Hip. Min. Hippias Minor Plato
In de Cael. In Aristotelis de Caelo

Commentaria Simplicius
In Eucl. In Euclidem Proclus
In Phys. In Aristotelis Physica

Commentaria Simplicius
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xiv Abbreviations

Abbreviation Work (standard title) Author

de Int. de Interpretatione Aristotle
In SC In Archimedes’ SC Eutocius
In Theaetet. Anonymi Commentarius

In Platonis Theaetetum Anonymous
Lgs. de Legibus Plato
Mech. Mechanica [Aristotle]
Mem. Memorabilia Xenophon
Metaph. Metaphysica Aristotle
Meteor. Meteorologica Aristotle
Meth. The Method Archimedes
Nu. Nubes Aristophanes
Ort. Risings and Settings Autolycus
Parm. Parmenides Plato
de Part. de Partibus Animalium Aristotle
PE Plane Equilibria Archimedes
Phaedr. Phaedrus Plato
Phys. Physica Aristotle
QP Quadrature of the Parabola Archimedes
Rep. Republica Plato
SC On Sphere and Cylinder Archimedes
SE Sophistici Elenchi Aristotle
SL Spiral Lines Archimedes
Theaetet. Theaetetus Plato
Tim. Timaeus Plato
Vit. Alc. Vita Alcibiadis Plutarch
Vita Marc. Aristotelis Vita

Marciana Anonymous
Vita Pyth. de Vita Pythagorica Iamblichus

 

Abbreviation Work (standard title) Author

Ann. Annales Tacitus
Nat. Hist. Naturalis Historia Pliny the Elder
ND de Natura Deorum Cicero
de Rep. de Republica Cicero
Tusc. Tusculanae Disputationes Cicero



 

Abbreviation Standard title

BGU Berliner griechische Urkunden
FD Fouilles de Delphes

ID Inscriptions Délos
IG Inscriptionae Graecae
IGChEg. Inscriptionae Graecae (Christian Egypt)
IK Inschriften aus Kleinasien
Ostras Ostraka (Strasburg)
P. Berol. Berlin Papyri

PCair.Zen. Zenon Papyri
PFay. Fayum Papyri
P. Herc. Herculaneum Papyri
PHerm Landl. Landlisten aus Hermupolis
POxy. Oxyrhynchus Papyri
YBC Yale Babylonian Collection

 

Abbreviation Reference (in bibliography)

CPF Corpus dei Papiri Filosofici
DK Diels–Kranz, Fragmente der Vorsokratiker

KRS Kirk, Raven and Schofield ()
L&S Long and Sedley ()
LSJ Liddell, Scott and Jones ()
Lewis and Short Lewis and Short ()
TLG Thesaurus Linguae Graecae
Usener Usener ()

  

When an indefinite reference is made to ancient scholars – who were
predominantly male – I use the masculine pronoun. The sexism was
theirs, not mine.
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The Greek alphabet

xvi

 A modern form for the letter in final position.

Capital
approximately Lower case
the form used in a form used in
ancient writing modern texts Name of letter

Α α Alpha
Β β Bbta
Γ γ Gamma
∆ δ Delta
Ε ε Epsilon
Ζ ζ Zbta
Η η Ēta
Θ θ Thbta
Ι ι Idta
Κ κ Kappa
Λ λ Lambda
Μ µ Mu
Ν ν Nu
Ξ ξ Xi
Ο ο Omicron
Π π Pi
Ρ ρ Rhd

Σ σ v Sigma
Τ τ Tau
Υ υ Upsilon
Φ φ Phi
Χ χ Chi
Ψ ψ Psi
W ω Ōmega



Note on the figures

As is explained in chapter , most of the diagrams in Greek math-
ematical works have not yet been edited from manuscripts. The figures
in modern editions are reconstructions made by modern editors, based
on their modern understanding of what a diagram should look like.
However, as will be argued below, such an understanding is culturally
variable. It is therefore better to keep, as far as possible, to the dia-
grams as they are found in Greek manuscripts (that is, generally speak-
ing, in Byzantine manuscripts). While no attempt has been made to
prepare a critical edition of the Greek mathematical diagrams pro-
duced here, almost all the figures have been based upon an inspection
of at least some early manuscripts in which their originals appear, and
I have tried to keep as close as possible to the visual code of those early
diagrams. In particular, the reader should forgo any assumptions about
the lengths of lines or the sizes of angles: unequal lines and angles may
appear equal in the diagrams and vice versa.

In addition to the ancient diagrams (which are labelled with the
original Greek letters), a few illustrative diagrams have been prepared
for this book. These are distinguished from the ancient diagrams by
being labelled with Latin letters or with numerals.

While avoiding painterly effects, ancient diagrams possess consider-
able aesthetic value in their austere systems of interconnected, labelled
lines. I wish to take this opportunity to thank Cambridge University
Press for their beautiful execution of the diagrams.
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 The lettered diagram

 

The lettered diagram

   

That diagrams play a crucial role in Greek mathematics is a fact often
alluded to in the modern literature, but little discussed. The focus of
the literature is on the verbal aspect of mathematics. What this has to
do with the relative roles of the verbal and the visual in our culture, I
do not claim to know. A description of the practices related to Greek
mathematical diagrams is therefore called for. It will prove useful for
our main task, the shaping of deduction.

The plan is: first, a brief discussion of the material implementation
of diagrams, in section . Some practices will be described in section .
My main claims will be that (a) the diagram is a necessary element
in the reading of the text and (b) the diagram is the metonym of
mathematics. I will conclude this section with a discussion of the
semiotics of lettered diagrams. Section  will describe some of the
historical contexts of the lettered diagram. Section  is a very brief
summary.

This chapter performs a trick: I talk about a void, an absent object,
for the diagrams of antiquity are not extant, and the medieval dia-
grams have never been studied as such. However, not all hope is lost.
The texts – whose transmission is relatively well understood – refer to
diagrams in various ways. On the basis of these references, observa-
tions concerning the practices of diagrams can be made. I thus start
from the text, and from that base study the diagrams.



 The critical edition most useful from the point of view of the ancient diagrams is Mogenet
(). Some information is available elsewhere: the Teubner edition of the Data, for instance,
is very complete on lettering; Jones’s edition of Pappus and Clagett’s edition of the Latin
Archimedes are both exemplary, and Janus, in Musici Graeci, is brief but helpful. Generally,
however, critical apparatuses do not offer substantial clues as to the state of diagrams in
manuscripts.



     

There are three questions related to the material implementation of
diagrams: first, the contexts in which diagrams were used; second, the
media available for drawing; finally, there is the question of the tech-
nique used for drawing diagrams – and, conversely, the technique
required for looking at diagrams (for this is a technique which must be
learned in its own right).

One should appreciate the distance lying between the original mo-
ment of inspiration, when a mathematician may simply have imagined
a diagram, and our earliest extensive form of evidence, parchment
codices. In between, moments of communication have occurred. What
audience did they involve?

First, the ‘solitaire’ audience, the mathematician at work, like some-
one playing patience. Ancient images pictured him working with a
diagram. We shall see how diagrams were the hallmark of mathemati-
cal activity and, of course, a mathematician would prefer to have a
diagram in front of him rather than playing the game out in his mind.
It is very probable, then, that the process of discovery was aided by
diagrams.

The contexts for communicating mathematical results must have
been very variable, but a constant feature would have been the small
numbers of people involved. This entails that, very often, the written
form of communication would be predominant, simply because fellow
mathematicians were not close at hand. Many Greek mathematical
works were originally set down within letters. This may be a trivial
point concerning communicative styles, or, again, it may be signifi-
cant. After all, the addressees of mathematical works, leaving aside the
Arenarius, are not the standard recipients of letters, like kings, friends
or relations. They seem to have been genuinely interested mathemati-
cians, and the inclusion of mathematics within a letter could therefore
be an indication that works were first circulated as letters.

The material implementation of diagrams 

 This is the kernel of the myth of Archimedes’ death in its various forms (see Dijksterhuis ()
ff.). Cicero’s evocation of Archimedes ‘from the dust and drawing-stick’ (Tusc. .) is also
relevant. Especially revealing is Archimedes’ tomb, mentioned in the same context. What is
Einstein’s symbol? Probably ‘E = MC ’. Archimedes’ symbol was a diagram: ‘sphaerae figura et
cylindri’ (ibid. .).

 See the discussion in chapter , subsection . below (pp. –).
 As well as Eratosthenes’ fragment in Eutocius.
 Pappus’ dedicatees are less easy to identify, but Pandrosion, dedicatee of book , for instance,

seems to have been a teacher of mathematics; see Cuomo () for discussion.



 The lettered diagram

Not much more is known, but the following observation may help
to form some a priori conclusions. The lettered diagram is not only a
feature of Greek mathematics; it is a predominant feature. Alternatives
such as a non-lettered diagram are not hinted at in the manuscripts.

There is one exception to the use of diagrams – the di’ arithmDn, ‘the
method using numbers’. While in general arithmetical problems are
proved in Greek mathematics by geometrical means, using a diagram,
sometimes arithmetical problems are tackled as arithmetical. Signifi-
cantly, even this is explicitly set up as an exception to a well-defined
rule, the dia grammDn, ‘the method using lines’. The diagram is seen as
the rule from which deviations may (very rarely) occur.

It is therefore safe to conclude that Greek mathematical exchanges,
as a rule, were accompanied by something like the lettered diagram.
Thus an exclusively oral presentation (excluding, that is, even a dia-
gram) is practically ruled out. Two methods of communication must
have been used: the fully written form, for addressing mathematicians
abroad, and (hypothetically) a semi-oral form, with some diagram, for
presentation to a small group of fellow mathematicians in one’s own
city.

. The media available for diagrams

It might be helpful to start by considering the media available to us.
The most important are the pencil/paper, the chalk/blackboard and
(gaining in importance) the computer/printer. All share these charac-
teristics: simple manipulation, fine resolution, and ease of erasing and
rewriting. Most of the media available to Greeks had none of these,
and none had ease of erasing and rewriting.

The story often told about Greek mathematicians is that they drew
their diagrams in sand. A variation upon this theme is the dusted

 I exclude the fragment of Hippocrates of Chios, which may of course reflect a very early,
formative stage. I also ignore for the moment the papyrological evidence. I shall return to it in
n.  below.

 I shall return to this distinction below, n. .
 Sand may be implied by the situation of the geometry lesson in the Meno, though nothing

explicit is said; if the divided line in the Republic was drawn in sand, then Cephalus’ house must
have been fairly decrepit. Aristotle refers to drawing in γ� – e.g. Metaph. a; it may well
be that he has the Meno in mind. Cicero, de Rep. .– and Vitruvius .., have the following
tale: a shipwrecked philosopher deduces the existence of life on the island on whose shores he
finds himself by (Vitruvius’ phrase) geometrica schemata descripta – one can imagine the wet sand
on the shore as a likely medium. The frontispiece to Halley’s edition of the Conics, reproduced
as the cover of Lloyd (), is a brilliant reductio ad absurdum of the story.



surface. This is documented very early, namely, in Aristophanes’ Clouds;

Demetrius, a much later author, misremembered the joke and thought
it was about a wax tablet – a sign of what the typical writing medium
was. Indeed, the sand or dusted surface is an extremely awkward
solution. The ostrakon or wax tablet would be sufficient for the likely
size of audience; a larger group would be limited by the horizontality
of the sand surfaces. And one should not think of sand as directly
usable. Sand must be wetted and tamped before use, a process involv-
ing some exertion (and mess). Probably the hard work was done by
Euclid’s slaves, but still it is important to bear in mind the need for
preparation before each drawing. Sand is a very cheap substitute for a
drawing on wood (on which see below), but it is not essentially differ-
ent. It requires a similar amount of preparation. It is nothing like the
immediately usable, erasable blackboard.

The possibility of large-scale communication should be considered –
and will shed more light on the more common small-scale communi-
cation. There is one set of evidence concerning forms of presentation
to a relatively large audience: the evidence from Aristotle and his
followers in the peripatetic school.

Aristotle used the lettered diagram in his lectures. The letters in the
text would make sense if they refer to diagrams – which is asserted in
a few places. Further, Theophrastus’ will mentions maps on pinakes
(for which see below) as part of the school’s property. Finally, Aristo-
tle refers to anatomai, books containing anatomical drawings, which
students were supposed to consult as a necessary complement to the
lecture.

What medium did Aristotle use for his mathematical and semi-
mathematical diagrams? He might have used some kind of prepared
tablets whose medium is nowhere specified. As such tablets were,

 Ashes, sprinkled upon a table: Aristophanes, Nu. . To this may be added later texts, e.g.
Cicero, Tusc. .; ND ..

 Demetrius, de Eloc. .
 I owe the technical detail to T. Riehl. My own experiments with sand and ashes, wetted or

not, were unmitigated disasters – this again shows that these surfaces are not as immediately
usable as are most modern alternatives.

 E.g. Meteor. a–, APr. b. Einarson () offers the general thesis that the syllogism
was cast in a mathematical form, diagrams included; while many of his individual arguments
need revision, the hypothesis is sound.

 D.L. .–.  See Heitz () –.
 Jackson ()  supplies the evidence, and a guess that Aristotle used a leukoma, which is

indeed probable; but Jackson’s authority should not obscure the fact that this is no more than
a guess.

The material implementation of diagrams 



 The lettered diagram

presumably, portable, they could not be just graffiti on the Lyceum’s
walls. Some kind of special surface is necessary, and the only practical
option was wood, which is the natural implication of the word pinax.
To make such writing more readable, the surface would be painted
white, hence the name leukDma, ‘whiteboard’ – a misleading transla-
tion. Writings on the ‘whiteboard’, unlike the blackboard, were diffi-
cult to erase.

Two centuries later than Aristotle, a set of mathematical – in this
case astronomical – leukDmata were put up as a dedication in a temple
in Delos. This adds another tiny drop of probability to the thesis
that wide communication of mathematical diagrams was mediated by
these whiteboards. On the other hand, the anatomai remind us how, in
the very same peripatetic school, simple diagrams upon (presumably)
papyrus were used instead of the large-scale leukDma.

Closer in nature to the astronomical tables in Delos, Eratosthenes,
in the third century , set up a mathematical column: an instrument
on top, below which was a résumé of a proof, then a diagram and
finally an epigram. This diagram was apparently inscribed in stone or
marble. But this display may have been the only one of its kind in
antiquity.

The development envisaged earlier, from the individual mathemati-
cian thinking to himself to the parchment codex, thus collapses into
small-scale acts of communication, limited by a small set of media,
from the dusted surface, through wax tablets, ostraka and papyri, to
the whiteboard. None of these is essentially different from a diagram
as it appears in a book. Diagrams, as a rule, were not drawn on site.
The limitations of the media available suggest, rather, the preparation
of the diagram prior to the communicative act – a consequence of the
inability to erase.

 See Gardthausen () –.
 ID .  face Β. col. .ff.; .  face Β. col. .ff.; .  face Β. col. .ff.
 It is also useful to see that, in general, wood was an important material in elementary math-

ematical education, as the archaeological evidence shows; Fowler () – has  items, of
which the following are wooden tablets: , , , , , , , , , .

 Eutocius, In SC ..–.
 Allow me a speculation. Archimedes’ Arenarius, in the manuscript tradition, contains no dia-

grams. Of course the diagrams were present in some form in the original (which uses the
lettered convention of reference to objects). So how were the diagrams lost? The work was
addressed to a king, hence, no doubt, it was a luxury product. Perhaps, then, the diagrams
were originally on separate pinakes, drawn as works of art in their own right?



. Drawing and looking

In terms of optical complexity, there are four types of objects required
in ancient mathematics.

. Simple -dimensional configurations, made up entirely by straight
lines and arcs;

. -dimensional configurations, requiring more complex lines, the most
important being conic sections (ellipse, parabola and hyperbola);

. -dimensional objects, excluding:
. Situations arising in the theory of spheres (‘sphaerics’).

Drawings of the first type were obviously mastered easily by the
Greeks. There is relatively good papyrological evidence for the use of
rulers for drawing diagrams. The extrapolation, that compasses (used
for vase-paintings, from early times)  were used as well, suggests itself.

On the other hand, the much later manuscripts do not show any
technique for drawing non-circular curved lines, which are drawn as
if they consist of circular arcs. This use of arcs may well have been a
feature of ancient diagrams as well.

Three-dimensional objects do not require perspective in the strict
sense, but rather the practice of foreshortening individual objects.

This was mastered by some Greek painters in the fifth century ; an
achievement not unnoticed by Greek mathematicians.

Foreshortening, however, does little towards the elucidation of spheri-
cal situations. The symmetry of spheres allows the eye no hold on
which to base a foreshortened ‘reading’. In fact, some of the diagrams
for spherical situations are radically different from other, ‘normal’ dia-
grams. Rather than providing a direct visual representation, they employ

The material implementation of diagrams 

 See Fowler (), plates between pp.  and  – an imperative one should repeat again
and again. For this particular point, see especially Turner’s personal communication on PFay.
, p. .

 See, e.g. Noble () – (with a fascinating reproduction on p. ).
 Toomer () lxxxv.
 In fact – as pointed out to me by M. Burnyeat – strictly perspectival diagrams would be less

useful. A useful diagram is somewhat schematic, suggesting objective geometric relations rather
than subjective optical impressions.

 White (), first part.
 Euclid’s Optics  proved that wheels of chariots appear sometimes as circles, sometimes as

elongated. As pointed out by White (: ), Greek painters were especially interested in the
foreshortened representation of chariots, sails and shields. Is it a fair assumption that the
author of Euclid’s theorem has in mind not so much wheels as representations of wheels?
Knorr () agrees, while insisting on how difficult the problem really is.
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a quasi-symbolical system in which, for instance, instead of a circle
whirling around a sphere, its ‘hidden’ part is shown outside the sphere.

I suspect that much of the visualisation work was done, in this special
context, by watching planetaria, a subject to which I shall return
below, in subsection ... But the stress should be on the peculiarity of
sphaerics. Most three-dimensional objects could have been drawn and
‘read’ from the drawing in a more direct, pictorial way.

It should not be assumed, however, that, outside sphaerics, dia-
grams were ‘pictures’. Kurt Weitzman offers a theory – of a scope
much wider than mathematics – arguing for the opposite. Weitzman
(, chapter ) shows how original Greek schematic, rough diagrams
(e.g. with little indication of depth and with little ornamentation) are
transformed, in some Arabic traditions, into painterly representations.
Weitzman’s hypothesis is that technical Greek treatises used, in gen-
eral, schematic, unpainterly diagrams.

The manuscript tradition for Greek mathematical diagrams, I re-
peat, has not been studied systematically. But superficial observations
corroborate Weitzman’s theory. Even if depth is sometimes indicated
by some foreshortening effects, there is certainly no attempt at painterly
effects such as shadowing. The most significant question from a math-
ematical point of view is whether the diagram was meant to be metrical:
whether quantitative relations inside the diagram were meant to corre-
spond to such relations between the objects depicted. The alternative
is a much more schematic diagram, representing only the qualitative
relations of the geometrical configuration. Again, from my acquaint-
ance with the manuscripts, they very often seem to be schematic in this
respect as well.

 Mogenet (). Thanks to Mogenet’s work, we may – uniquely – form a hypothesis concern-
ing the genesis of these diagrams. It is difficult to imagine such a system being invented by
non-mathematical scribes. Even if it was not Autolycus’ own scheme, it must reflect some
ancient mathematical system.

 While foreshortening is irrelevant in the case of spheres, shading is relevant. In fact, in Roman
paintings, shading is systematically used for the creation of the illusion of depth when columns,
i.e. cylinders, are painted. The presence of ‘strange’ representations for spheres shows, there-
fore, a deliberate avoidance of the practice of shading. This, I think, is related to what I will
argue later in the chapter, that Greek diagrams are – from a certain point of view – ‘graphs’
in the mathematical sense. They are not drawings.

 Effects which do occur in early editions – and indeed in some modern editions as well.
 Compare Jones ( ) . on the diagrams of Pappus: ‘The most apparent . . . convention is

a pronounced preference for symmetry and regularization . . . introducing [e.g.] equalities
where quantities are not required to be equal.’ Such practices (which I have often seen in
manuscripts other than Pappus’) point to the expectation that the diagram should not be read
quantitatively.



To sum up, then: when mathematical results were presented in
anything other than the most informal, private contexts, lettered dia-
grams were used. These would typically have been prepared prior to
the mathematical reasoning. Rulers and compasses may have been
used. Generally speaking, a Greek viewer would have read into them,
directly, the objects depicted, though this would have required some
imagination (and, probably, what was seen then was just the schematic
configuration); but then, any viewing demands imagination.

     

. The mutual dependence of text and diagram

There are several ways in which diagram and text are interdepend-
ent. The most important is what I call ‘fixation of reference’ or
‘specification’.

A Greek mathematical proposition is, at face value, a discussion
of letters: alpha, bBta, etc. It says such things as ‘ΑΒ is bisected at Γ’.
There must be some process of fixation of reference, whereby these
letters are related to objects. I argue that in this process the diagram is
indispensable. This has the surprising result that the diagram is not
directly recoverable from the text.

Other ways in which text and diagram are interdependent derive
from this central property. First, there are assertions which are directly
deduced from the diagram. This is a strong claim, as it seems to
threaten the logical validity of the mathematical work. As I shall try to
show, the threat is illusory. Then, there is a large and vague field of
assertions which are, as it were, ‘mediated’ via the diagram. I shall try
to clarify this concept, and then show how such ‘mediations’ occur.

 P. Berol. , presented in Brashear (), is a proof of this claim. This papyrus – a second-
century  fragment of unknown provenance – covers Elements ., with tiny remnants of .
and .. For each proposition, it has the enuncation together with an unlettered diagram, and
nothing else. It is fair to assume that the original papyrus had more propositions, treated in the
same way. My guess is that this was a memorandum, or an abridgement, covering the first
book of Euclid’s Elements. Had someone been interested in carrying out the proof, the lettering
would have occurred on a copy on, e.g. a wax-tablet. (The same, following Fowler’s suggestion
() –, can be said of POxy. i..)

To anticipate: in chapter  I shall describe the practices related to the assigning of letters to
points, and will argue for a semi-oral dress-rehearsal, during which letters were assigned to
points. This is in agreement with the evidence from the papyri.

 The word ‘specification’ is useful, as long as it is clear that the sense is not that used by Morrow
in his translation of Proclus (a translation of the Greek diorismos). I explain my sense below.

Practices of the lettered diagram 



 The lettered diagram

.. Fixation of reference
Suppose you say (fig. .):

Let there be drawn a circle, whose centre is A.

This is a more complicated case. I do not mean the fact that a circle
may have many radii. It may well be that for the purposes of the proof
it is immaterial which radius you take, so from this point of view saying
‘a radius’ may offer all the specification you need. What I mean by
‘specification’ is shorthand for ‘specification for the purposes of the proof ’.

Figure ..

A

A is thereby completely specified, since a circle can have only one
centre.

Another possible case is (figs. .a, .b):

Let there be drawn a circle, whose radius is BC.

B C C B

Figure .a. Figure .b.



But even granted this, a real indeterminacy remains here, for we
cannot tell here which of BC is which: which is the centre and which
touches the circumference. The text of the example is valid with both
figures .a and .b. B and C are therefore underspecified by the text.

Finally, imagine that the example above continues in the following
way (fig. .):

Let there be drawn a circle, whose radius is BC. I say that DB is
twice BC.

Practices of the lettered diagram 

D in this example is neither specified nor underspecified. Here is
a letter which gets no specification at all in the text, which simply
appears out of the blue. This is a completely unspecified letter.

We have seen three classes: completely specified, underspecified,
and completely unspecified. Another and final class is that of letters
which change their nature through the proposition. They may first
appear as completely unspecified, and then become at least under-
specified; or they may first appear as underspecified, and later get com-
plete specification. This is the basic classification into four classes.
I have surveyed all the letters in Apollonius’ Conics  and Euclid’s
Elements , counting how many belong to each class. But before
presenting the results, there are a few logical complications.

First, what counts as a possible moment of specification? Consider
the following case. Given the figure ., the assertion is made: ‘and
therefore AB is equal to BC’. Suppose that nothing in the proposition
so far specified B as the centre of the circle. Is this assertion then a
specification of B as the centre? Of course not, because of the ‘there-
fore’ in the assertion. The assertion is meant to be a derivation, and

Figure ..

C BD
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B CA

Figure ..

making it into a specification would make it effectively a definition, and
the derivation would become vacuous. Thus such assertions cannot
constitute specifications. Roughly speaking, specifications occur in the
imperative, not in the indicative. They are ‘let the centre of the circle,
B, be taken’, etc.

Second, letters are specified by other letters. It may happen that
those other letters are underspecified themselves. I have ignored this
possibility. I have been like a very lenient teacher, who always gives his
pupils a chance to reform. At any given moment, I have assumed that
all the letters used in any act of specification were fully specified them-
selves. I have concentrated on relative specification, specification of a
letter relative to the preceding letters. This has obvious advantages,
mainly in that the statistical results are more interesting. Otherwise,
practically all letters would turn out to be underspecified in some
way.

Third and most important, a point which Grattan-Guinness put
before me very forcefully: it must always be remembered, not only
what the text specifies, but also what the mathematical sense demands.
I have given such an example already, with ‘taking a radius’. If the
mathematical sense demands that we take any radius, then even if the
text does not specify which radius we take, still this constitutes no
underspecification. This is most clear with cases such as ‘Let some point
be taken on the circle, A’. Whenever a point is taken in this way, it
is necessarily completely specified by the text. The text simply cannot
give any better specification than this. So I stress: what I mean by
‘underspecified letters’ is not at all ‘variable letters’. On the contrary:
variable points have to be, in fact, completely specified. I mean letters



which are left ambiguous by the text – which the text does not specify
fully, given the mathematical purposes.

Now to the results. In Euclid’s Elements , about % of the
letters are completely specified, about % are underspecified, about
% are completely unspecified, and about % begin as completely
unspecified or underspecified, and get increased specification later. In
Apollonius’ Conics , about % are completely specified, about %
are underspecified, about % are completely unspecified, and about
% begin as completely unspecified or underspecified, and get in-
creased specification later. The total number of letters in both surveys
is .

Very often – most often – letters are not completely specified. So
how do we know what they stand for? Very simple: we see this in the
diagram.

In fact the difficult thing is to ‘unsee’ the diagram, to teach oneself
to disregard it and to imagine that the only information there is is that
supplied by the text. Visual information is compelling itself in an un-
obtrusive way. Here the confessional mode may help to convert my
readers. It took me a long time to realise how ubiquitous lack of
specification is. The following example came to me as a shock. It is, in
fact, a very typical case.

Look at Apollonius’ Conics . (fig. .). The letter Λ is specified at
., where it is asserted to be on a parallel to ∆Ε, which passes
through Κ. Λ is thus on a definite line. But as far as the text is con-
cerned, there is no way of knowing that Λ is a very specific point on
that line, the one intersecting with the line ΖΗ. But I had never even
thought about this insufficiency of the text: I always read the diagram
into the text. This moment of shock started me on this survey. Having
completed the survey, its implications should be considered.

First, why are there so many cases falling short of full specification?
To begin to answer this question, it must be made clear that my results
have little quantitative significance. It is clear that the way in which
letters in Apollonius fail to get full specification is different from that in
Euclid. I expect that there is a strong variability between works by the
same author. The way in which letters are not fully specified depends
upon mathematical situations. Euclid, for instance, in book , may
construct a circle, e.g. ΑΒΓ∆Ε, and then construct a pentagon within

 The complete tables, with a more technical analysis of the semantics of specification, are to
appear in Netz (forthcoming).

Practices of the lettered diagram 
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Figure .. Apollonius’ Conics ..

the same circle, such that its vertices are the very same ΑΒΓ∆Ε. This
is moving from underspecification to complete specification, and is
demanded by the subject matter dealt with in his book. In the Conics,
parallel lines and ordinates are the common constructions, and letters
on them are often underspecified (basically, they are similar to ‘BC’ in
figs. .a, .b above).

What seems to be more stable is the percentage of fully specified
letters. Less than half the letters are fully specified – but not much less
than half. It is as if the authors were indifferent to the question of
whether a letter were specified or not, full specification being left as a
random result.

This, I claim, is the case. Nowhere in Greek mathematics do we
find a moment of specification per se, a moment whose purpose is to
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make sure that the attribution of letters in the text is fixed. Such
moments are very common in modern mathematics, at least since
Descartes. But specifications in Greek mathematics are done, liter-
ally, ambulando. The essence of the ‘imperative’ element in Greek math-
ematics – ‘let a line be drawn . . .’, etc. – is to do some job upon the
geometric space, to get things moving there. When a line is drawn
from one point to another, the letters corresponding to the start and
end positions of movement ought to be mentioned. But they need not
be carefully differentiated; one need not know precisely which is the
start and which is the end – both would do the same job, produce the
same line (hence underspecification); and points traversed through this
movement may be left unmentioned (hence complete unspecification).

What we see, in short, is that while the text is being worked through,
the diagram is assumed to exist. The text takes the diagram for granted.
This reflects the material implementation discussed above. This, in
fact, is the simple explanation for the use of perfect imperatives in the
references to the setting out – ‘let the point A have been taken’. It
reflects nothing more than the fact that, by the time one comes to
discuss the diagram, it has already been drawn.

The next point is that, conversely, the text is not recoverable from
the diagram. Of course, the diagram does not tell us what the propo-
sition asserts. It could do so, theoretically, by the aid of some symbolic
apparatus; it does not. Further, the diagram does not specify all the
objects on its own. For one thing, at least in the case of sphaerics, it
does not even look like its object. When the diagram is ‘dense’, satu-
rated in detail, even the attribution of letters to points may not be
obvious from the diagram, and modern readers, at least, reading
modern diagrams, use the text, to some extent, in order to elucidate
the diagram. The stress of this section is on inter-dependence. I have
not merely tried to upset the traditional balance between text and

 In Descartes, the same thing is both geometric and algebraic: it is a line (called AB ), and it is
an algebraic variable (called a). When the geometrical configuration is being discussed, ‘AB ’
will be used; when the algebraic relation is being supplied, ‘a ’ is used. The square on the line
is ‘the square on AB ’ (if we look at it geometrically) or a (if we look at it algebraically). To
make this double-accounting system workable, Descartes must introduce explicit, per se speci-
fications, identifying symbols. This happens first in Descartes () . This may well be the
first per se moment of specification in the history of mathematics.

 The suggestion of Lachterman () –, that past imperatives reflect a certain horror operandi,
is therefore unmotivated, besides resting on the very unsound methodology of deducing a
detailed philosophy, presumably shared by each and every ancient mathematician, from lin-
guistic practices. The methodology adopted in my work is to explain shared linguistic practices
by shared situations of communication.

Practices of the lettered diagram 
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diagram; I have tried to show that they cannot be taken apart, that
neither makes sense in the absence of the other.

.. The role of text and diagram for derivations
In general, assertions may be derived from the text alone, from the
diagram alone, or from a combination of the two. In chapter , I shall
discuss grounds for assertions in more detail. What is offered here is
an introduction.

First, some assertions do derive from the text alone. For instance,
take the following:

As ΒΕ is to Ε∆, so are four times the rectangle contained by ΒΕ, ΕΑ
to four times the rectangle contained by ΑΕ, Ε∆.

One brings to bear here all sorts of facts, for instance the relations
between rectangles and sides, and indeed some basic arithmetic. One
hardly brings to bear the diagram, for, in fact, ‘rectangles’ of this type
often involve lines which do not stand at right angles to each other; the
lines often do not actually have any point in common.

So this is one type of assertion: assertions which may be viewed as
verbal and not visual. Another class is that of assertions which are
based on the visual alone. To say that such assertions exist means that
the text hides implicit assumptions that are contained in the diagram.

That such cases occur in Greek mathematics is of course at the
heart of the Hilbertian geometric programme. Hilbert, one of the
greatest mathematicians of the twentieth century, who repeatedly re-
turned to foundational issues, attempted, in Hilbert (), to rewrite
geometry without any unarticulated assumptions. Whatever the text
assumes in Hilbert (), it either proves or explicitly sets as an axiom.
This was never done before Hilbert, mainly because much information
was taken from the diagram. As is well known, the very first proposition

 Apollonius’ Conics ., .–. The Greek text is more elliptic than my translation.
 Here the lines mentioned do share a point, but they are not at right angles to each other. See,

for instance, Conics ., ., the rectangle contained by ΚΒ, ΑΝ – lines which do not share
a point.

 This class is not exhausted by examples such as the above (so-called ‘geometrical algebra’). For
instance, any calculation, as e.g. in Aristarchus’ On Sizes and Distances, owes nothing to the
diagram. It should be noted that even ‘geometrical algebra’ is still ‘geometrical’: the text does
not speak about multiplications, but about rectangles. This of course testifies to the primacy of
the visual over the verbal. In general, see Unguru (, ), Unguru and Rowe (–),
Unguru and Fried (forthcoming), Hoyrup (a), for a detailed criticism of any interpretation
of ‘geometrical algebra’ which misses its visual motivation. The term itself is misleading, but
helps to identify a well-recognised group of propositions, and I therefore use it, quotation
marks and all.



 Most recommended is Russell () ff., viciously and in a sense justly criticising Euclid for
such logical omissions.

 For a discussion of the absence of Pasch axioms from Greek mathematics, see Klein ()
–.

 .–.  .–.

Practices of the lettered diagram 

ΒΑ

Γ

Figure .. Euclid’s Elements ..

of Euclid’s Elements contains an implicit assumption based on the
diagram – that the circles drawn in the proposition meet (fig. .).

There is a whole set of assumptions of this kind, sometimes called
‘Pasch axioms’. ‘A line touching a triangle and passing inside it touches
that triangle at two points’ – such assumptions were generally, prior to
the nineteenth century, taken to be diagrammatically obvious.

Many assertions are dependent on the diagram alone, and yet
involve nothing as high-powered as ‘Pasch axioms’. For instance,
Apollonius’ Conics . (fig. .): the argument is that Α∆ΒΖ is equal to
ΑΓΖ and, therefore, subtracting the common ΑΕΒΖ, the remaining
Α∆Ε is equal to ΓΒΕ. Adopting a very grand view, one may say that
this involves assumptions of additivity, or the like. This is part of the
story, but the essential ground for the assertion is identifying the
objects in the diagram.

My argument, that text and diagram are interdependent, means
that many assertions derive from the combination of text and diagram.
Naturally, such cases, while ubiquitous, are difficult to pin down pre-
cisely. For example, take Apollonius’ Conics . (fig. .). It is asserted –
no special grounds are given – that ΜΚ:ΚΓ::Γ∆:∆Λ. The implicit ground
for this is the similarity of the triangles ΜΚΓ, Γ∆Λ. Now diagrams
cannot, in themselves, show satisfactorily the similarity of triangles.
But the diagram may be helpful in other ways, for, in fact, the similarity
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Figure .. Apollonius’ Conics . (Parabola Case).
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Figure .. Apollonius’ Conics . (Hyperbola Case).

of the relevant triangles is not asserted in this proposition. To see
this similarity, one must piece together a few hints: Γ∆ is parallel to
ΚΘ (.); Μ lies on ΚΘ (underspecified by the text); ΓΚ is parallel to
∆Θ (.); Λ lies on ∆Θ (underspecified by the text); Μ lies on ΓΛ
(.). Putting all of these together, it is possible to prove that the
two triangles are similar. In a sense we do piece together those hints.
But we are supposed to be able to do so at a glance (a significant
phrase!). How do we do it then? We coordinate the various facts



involved, and we coordinate them at great ease, because they are all
simultaneously available on the diagram. The diagram is synoptic.

Note carefully: it is not the case that the diagram asserts information
such as ‘ΓΚ is parallel to ∆Θ’. Such assertions cannot be shown to be
true in a diagram. But once the text secures that the lines are parallel,
this piece of knowledge may be encoded into the reader’s representa-
tion of the diagram. When necessary, such pieces of knowledge may
be mobilised to yield, as an ensemble, further results.

.. The diagram organises the text
Even at the strictly linguistic level, it is possible to identify the presence
of the diagram. A striking example is the following (fig. .):

 Apollonius, Conics ., .–: κα­ ε®λ�φθω τι �π­ τ�v τοµ�v σηµε´ον τ¿ Λ, κα­ δ® αÍτοÖ
τ≥ Ε∆ παρáλληλοv �χθω � ΛΜΞ, τ≥ δ� ΒΗ � ΛΡΝ, τ≥ δ� ΕΘ � ΜΠ.

Practices of the lettered diagram 
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Figure .. Apollonius’ Conics . (Ellipse Case).
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And let some point be taken on the section, Λ, and, through it, let
ΛΜΞ be drawn parallel to Ε∆, ΛΡΝ to ΒΗ, ΜΠ to ΕΘ.

Syntactically, the sentence means that ΜΠ passes through Λ – which
ΜΠ does not. The diagram forces one to carry Λ over to a part of the
sentence, and to stop carrying it over to another part. The pragmat-
ics of the text is provided by the diagram. The diagram is the frame-
work, the set of presuppositions governing the discourse.

A specific, important way in which the diagram organises the text
is the setting of cases. This is a result of the diagrammatic fixation
of reference. Consider Archimedes’ PE .: ΕΖΗ, ΑΒΓ are two similar
sections; ΖΘ, Β∆ are, respectively, their diameters; Λ, Κ, respectively,
their centres of gravity (fig. .). The proposition proves, through a
reductio, that ΖΛ:ΛΘ::ΒΚ:Κ∆. How? By assuming that a different point,
Μ, satisfies ΖΜ:ΜΘ::ΒΚ:Κ∆. Μ could be put either above or below Λ.
The cases are asymmetrical. Therefore these are two distinct cases.
Archimedes, however, does not distinguish the cases in the text. Only the
diagram can settle the question of which case he preferred to discuss.

There are many ways in which it can be seen that the guiding
principle in the development of the proof is spatial rather than logical.
Take, for instance, Apollonius’ Conics . (fig. .): the proposition
deals with a construction based on an ellipse. This construction has
two ‘wings’, as it were. The development of the proof is the following:
first, some work is done on the lower wing; next, the results are re-
worked on the ellipse itself; finally, the results are transferred to the

 Compare also the same work, proposition , .–: the syntax seems to imply that ∆Θ passes
through Ε; it does not. In the same proposition, .–: is Γ on the hyperbola or on the
diameter? The syntax, if anything, favours the hyperbola; the diagram makes it stand on the
diameter: two chance examples from a chance proposition.

Α Η

Κ

∆ Γ

Β Λ

Ξ

Μ

Ε Θ

Ζ

Figure .. Archimedes’ PE ..



upper wing. One could, theoretically, proceed otherwise, collecting
results from all over the figure simultaneously. Apollonius chose to
proceed spatially. There are a number of contexts where the role of
spatial visualisation can be shown, on the basis of the practices con-
nected with the assignment of letters to objects, and I shall return to
this issue in detail in chapter  below. The important general observation
is that the diagram sets up a world of reference, which delimits the
text. Again, this is a result of the role of the diagram for the process of
fixation of reference. Consider a very typical case: Λ in Apollonius’
Conics .. It is specified in the following way (fig. .): ‘From Κ, let a

 The first part is .–, the second is .–, the third is .–.. That the second part
casts a brief glance – seven words – back at the lower wing serves to show the contingency of
this spatial organisation.

 ..
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Figure .. Apollonius’ Conics ..
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perpendicular, to ΒΓ be drawn (namely) ΚΘΛ.’ The locus set up for Λ
is a line. How do we know that it is at the limit of that line, on the
circle ΓΚΒ? Because Λ is the end point of the action of drawing the
line ΚΘΛ – and because this action must terminate on this circle for this
circle is the limit of the universe of this proposition. There are simply no points
outside this circle.

Greek geometrical propositions are not about universal, infinite space.
As is well known, lines and planes in Greek mathematics are always
finite sections of the infinite line and plane which we project. They are,
it is true, indefinitely extendable, yet they are finite. Each geometrical
proposition sets up its own universe – which is its diagram.
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Figure .. Apollonius’ Conics . (One of the Cases).



.. The mutual dependence of text and diagram: a summary
Subsections ..–.., taken together, show the use of the diagram as
a vehicle for logic. This might be considered a miracle. Are diagrams
not essentially misleading aids, to be used with caution?

Mueller, after remarking on Greek implicit assumptions, went on to
add that these did not invalidate Greek mathematics, for they were
true. This is a startling claim to be made by someone who, like Mueller,
is versed in modern philosophy of mathematics, where truth is often
seen as relative to a body of assumptions. Yet Mueller’s claim is correct.

To begin with, a diagram may always be ‘true’, in the sense that it
is there. The most ultra-abstract modern algebra often uses diagrams
as representations of logical relations. Diagrams, just like words, may
be a way of encoding information. If, then, diagrams are seen in this
way, to ask ‘how can diagrams be true?’ is like asking ‘how can lan-
guage be true?’ – not a meaningless question, but clearly a different
question from that we started from.

But there is more to this. The problem, of course, is that the dia-
gram, qua physical object, does not model the assertions made concern-
ing it. The physical diagram and the written text often clash: in one,
the text, the lines are parallel; in the other, the diagram, they are not.
It is only the diagram perceived in a certain way which may function
alongside the text. But this caveat is in fact much less significant than
it sounds, since whatever is perceived is perceived in a certain way, not
in the totality of its physical presence. Thus the logical usefulness of
the diagram as a psychological object is unproblematic – the important
requirement is that the diagram would be perceived in an inter-
subjectively consistent way.

Poincaré – having his own axe to grind, no doubt – offered the
following interpretation of the diagram: ‘It has often been said that
geometry is the art of reasoning correctly about figures which are
poorly constructed. This is not a quip but a truth which deserves
reflection. But what is a poorly constructed figure? It is the type which
can be drawn by the clumsy craftsman.’

Immediately following this, Poincaré goes on to characterise the
useful diagram: ‘He [the clumsy craftsman] distorts proportions more
or less flagrantly . . . But [he] must not represent a closed curve by an

 Mueller () .
 See e.g. Maclane and Birkhoff (), passim (explanation on the diagrammatic technique is

found in ff.).
 I quote from the English translation, Poincaré () .

Practices of the lettered diagram 
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open curve . . . Intuition would not have been impeded by defects in
drawing which are of interest only in metric or projective geometry.
But intuition will become impossible as soon as these defects involve
analysis situs.’

The analysis situs   is Poincaré’s hobby-horse, and should be ap-
proached with caution. The diagram is not just a graph, in the sense of
graph theory. It contains at least one other type of information, namely
the straightness of straight lines; that points stand ‘on a line’ is con-
stantly assumed on the basis of the diagram. This fact is worth a detour.

How can the diagram be relied upon for the distinction between
straight and non-straight? The technology of drawing, described in
section  above, showed that diagrams were drawn, probably, with no
other tools than the ruler and compasses. Technology represented no
more than the distinction between straight and non-straight. The man-
made diagram, unlike nature’s shapes, was governed by the distinction
between straight and non-straight alone. The infinite range of angles was
reduced by technology into a binary distinction. This is hypothetical,
of course, but it may serve as an introduction to the following suggestion.

There is an important element of truth in Poincaré’s vision of the
diagram. The diagram is relied upon as a finite system of relations. I
have described above the proposition as referring to the finite universe
of the diagram. This universe is finite in two ways. It is limited in
space, by the boundaries of the figure; and it is discrete. Each geo-
metrical proposition refers to an infinite, continuous set of points. Yet
only a limited number of points are referred to, and these are almost
always (some of ) the points standing at the intersections of lines. The
great multitude of proletarian points, which in their combined efforts
construct together the mathematical objects, is forgotten. All attention
is fixed upon the few intersecting points, which alone are named. This,

 Corresponding – as far as it is legitimate to make such correspondences – to our notion of
‘topology’.

 That the full phrase of the form � εÍθε´α γραµµ� ΑΒ is almost always contracted to the
minimum � ΑΒ, even though this may equally well stand for � γραµµ� ΑΒ simpliciter – i.e. for
a curved rather than a straight line – reflects the fact that this basic distinction, between
curved and straight, could generally be seen in the diagram.

 So far, the technology is not confined to Greece; and Babylonian ‘structural diagrams’,
described by Hoyrup (a: –), are useful in this context.

 In Archimedes’ SL, which includes  geometrical propositions (i.e. a few hundred letters),
there are  which do not stand in extremes, or intersections, of lines, namely proposition :
Β, Γ, Κ; : Β, Κ; : Β, Γ, Κ, Ν; : Β, Κ, Ν; : Β, Γ, Κ, Λ; : Β, Ε, Κ, Λ; : Β, Λ; : ∆; :
Β. I choose this example as a case where there are relatively many such points, the reason
being Archimedes’ way of naming spirals by many letters, more letters than he can affix to
extremes and intersections alone – essentially a reflection of the peculiarity of the spiral.



finally, is the crucial point. The diagram is named – more precisely, it
is lettered. It is the lettering of the diagram which turns it into a system
of intersections, into a finite, manageable system.

To sum up, there are two elements to the technology of diagrams:
the use of ruler and compasses, and the use of letters. Each element
redefines the infinite, continuous mass of geometrical figures into a
man-made, finite, discrete perception. Of course, this does not mean
that the object of Greek mathematics is finite and discrete. The per-
ceived diagram does not exhaust the geometrical object. This object is
partly defined by the text, e.g. metric properties are textually defined.
But the properties of the perceived diagram form a true subset of the
real properties of the mathematical object. This is why diagrams are
good to think with.

. Diagrams as metonyms of propositions

A natural question to ask here is whether the practices described so
far are reflected in the Greek conceptualisation of the role of dia-
grams. The claim of the title is that this is the case, in a strong sense.
Diagrams are considered by the Greeks not as appendages to proposi-
tions, but as the core of a proposition.

.. Speaking about diagrams 

Our ‘diagram’ derives from Greek diagramma whose principal meaning
LSJ define as a ‘figure marked out by lines’, which is certainly
etymologically correct. The word diagramma is sandwiched, as it were,
between its anterior and posterior etymologies, both referring simply
to drawn figures. Actual Greek usage is more complex.

Diagramma is a term often used by Plato – one of the first, among
extant authors, to have used it – either as standing for mathematical
 A disclaimer: I am not making the philosophical or cognitive claim that the only way in which

diagrams can be deductively useful is by being reconceptualised via letters. As always, I am a
historian, and I make the historical claim that diagrams came to be useful as deductive tools in
Greek mathematics through this reconceptualisation.

 That they put diagrams as ‘appendages’ – i.e. at the end of propositions rather than at their
beginning or middle – shows something about the relative role of beginning and end, not
about the role of the diagram. It should be remembered that the titles of Greek books are also
often put at the end of treatises. My guess is that, reading a Greek proposition, the user would
unroll some of the papyrus to have the entire text of the proposition (presumably a few
columns long) ending conveniently with the diagram. It was the advent of the codex which led
to today’s nightmare of constant backwards-and-forwards glancing, from text to diagram,
whenever the text spills from one page to the next.

 Part of the argument of this subsection derives from Knorr () –.
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proofs or as the de rigueur accompaniment of mathematics. With
Aristotle, diagrammata (the plural of diagramma) can practically mean
‘mathematics’, while diagramma itself certainly means ‘a mathematical
proposition’. Xenophon tells us that Socrates used to advise young
friends to study geometry, but not as far as the unintelligible
diagrammata, and we begin to think that this may mean more than just
very intricate diagrams in the modern sense. Further, Knorr has shown
that the cognates of graphein, ‘to draw’, must often be taken to carry a
logical import. He translates this verb by ‘prove by means of dia-
grams’. Certainly this phrase is the correct translation; however, we
should remember that the phrase stands for what, for the Greeks, was
a single concept.

Complementary to this, the terminology for ‘diagram’ in the mod-
ern sense is complex. The word diagramma is never used by Greek
mathematicians in the sense of ‘diagram’. When they want to empha-
sise that a proposition relies upon a diagram, they characterise it as
done dia grammDn – ‘through lines’, in various contexts opposed to the
only other option, di’ arithmDn – ‘through numbers’.

A word mathematicians may use when referring to diagrams present
within a proof is katagraphB – best translated as ‘drawing’. The verb
katagraphein is regularly used in the sense of ‘completing a figure’, when
the figure itself is not specified in the text. The verb is always used
within this formula, and with a specific figure: a parallelogram (often
rectangle) with a diagonal and parallel lines inside it.

 As in Euthd. c; Phaedr. b; Theaetet. a; the [pseudo?]-Platonic Epin. e; and, of course,
Rep. c.

 E.g. APr. b; Meteor. b; Cat. b; Metaph. a, a; SE a.
 Mem. ...  Knorr () –.
 See, e.g. Heron: Metrica ..; Ptolemy: Almagest ., ., ., ., Harmonics ., .;

Pappus ..–. Proclus, In Rem Publicam .. The treatment of book  by Hero, as
preserved in the Codex Leidenensis (Besthorn and Heiberg (: ff.), is especially curious: it
appears that Hero set out to prove various results with as few lines as possible, preferably with
none at all, but with a single line if the complete avoidance of lines was impossible (one is
reminded of children’s puzzles – ‘by moving one match only, the train changes into a bal-
loon’). Hero’s practice is comparable to the way a modern mathematician would be interested
in proving the result X on the basis of fewer axioms than his predecessors. Modern mathema-
ticians prove with axioms; Greek mathematicians proved with lines.

 See e.g. Euclid’s Elements ., ., .; Apollonius, Conics .. Archimedes usually refers
simply to σχ�µατα (CF .., ., .; SC ..). This is ‘figure’ in the full sense of
the word, best understood as a continuous system of lines; a single diagram – especially an
Archimedean one! – may include more than a single σχ�µα. Finally, Archimedes uses once
the verb Îπογρáφειν (PE . Cor. , .), a relative of καταγρáφειν.

 The first five propositions of Euclid’s Elements , and also: ., ; .–; .–. The
formula is a feature of the Euclidean style – though the fact that Apollonius and Archimedes
do not use it should be attributed, I think, to the fact that they do not discuss this rectangle.



Aristotle’s references to diagrams are even more varied. On several
occasions he refers to his own diagrams as hupographai, yet another
relative of the same etymological family. Diagraphai – a large family –
are mentioned as well. None of these diagrams are mathematical dia-
grams; when referring to a proof where a mathematical diagram
occurs, Aristotle uses the word diagramma, and we are left in the dark as
to whether this refers to the diagram or to the proof as a whole. What
does emerge in Aristotle’s case is a certain discrepancy between the
standard talk about mathematics and the talk of mathematics. We will
become better acquainted with this discrepancy in chapter .

Mathematical commentators may combine the two discourses, of
mathematics and about mathematics. What is their usage? Pappus
uses diagramma as a simple equivalent of our ‘proposition’. In several
cases, when referring to a diagram inside a proposition, he uses
hupographB. Proclus never uses diagramma when referring to an actual
present diagram, to which he refers by using the term katagraphB or,
once, hupogegrammenB. Eutocius uses katagraphB quite often. SchBma,
in the sense of one of the diagrams referred to in a proposition, is used
as well. It is interesting that one of these uses derives directly from
Archimedes, while all the rest occur in – what I believe is a genuine
– Eratosthenes fragment.

The evidence is spread over a very long period indeed, but it is
coherent. Alongside more technical words signifying a ‘diagram’ in
the modern sense – words which never crystallised into a systematic
terminology – the word diagramma is the one reserved for signifying
that which a mathematical proposition is. Should we simply scrap, then,
the notion that diagramma had anything at all to do with a ‘diagram’?
Certainly not. The etymology is too strong, and the semantic situation
can be easily understood. Diagramma is the metonym of the proposition.

 de Int. a; Meteor. a, a; HA a; EE b.
 EE a; EN a; HA a, a. The γεγραµµ�ναι of de Part. a is probably

relevant as well; I guess that the last mentioned are êνατοµα¬-type diagrams, included in a
book, and that diagrams set out in front of an audience (e.g. on wooden tablets) are called
Îπογραφα¬; but this is strictly a guess.

 E.g. .., .–. When counting propositions in books, Pappus often counts θεωρ�µατα
�τοι διαγρáµµατα, ‘theorems, or diagrams’ – a nice proof that ‘diagrams’ may function as
metonyms of propositions.

 Several cognate expressions occur in .., ., .; .., . and, perhaps,
...

 In Eucl.: καταγραφ�: ., ., ., .–; Îπογεγραµµ�νη: ..
 Seventeen times in the commentary to Archimedes, for which see index  to Archimedes

vol. .
 ..  ., ., ., .
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It is so strongly entrenched in this role that when one wants to make
quite clear that one refers to the diagram and not to the proposition –
which happens very rarely – one has to use other, more specialised
terms.

.. Diagrams and the individuation of propositions
That diagrams may be the metonyms of propositions is surprising for
the following reason. The natural candidate from our point of view
would be the ‘proposition’, the enunciation of the content of the pro-
position – because this enunciation individuates the proposition. The
hallmark of Euclid’s Elements . is that it proves ‘Pythagoras’ theorem’
– which no other proposition does. On the other hand, nothing, logic-
ally, impedes one from using the same diagram for different propositions.

Even if this were true, it would show not that diagrams cannot be
metonyms, but just that they are awkward metonyms. But interestingly
this is wrong. The overwhelming rule in Greek mathematics is that
propositions are individuated by their diagrams. Thus, diagrams are
convenient metonyms.

The test for this is the following. It often happens that two separate
lines of reasoning employ the same basic geometrical configuration.
This may happen either within propositions or between propositions.

Identity of configuration need not, however, imply identity of diagram,
since the lettering may change while the configuration remains. My
claim is that identity of configuration implies identity of diagram within
propositions, and does not imply such identity between propositions.

What is an ‘identity’ between diagrams? This is a matter of degree –
one can give grades, as it were:

. ‘Identity simpliciter ’ – the diagrams may be literally identical.
.. ‘Inclusion’ – the diagrams may not be identical, because the sec-

ond has some geometrical elements which did not occur in the
 Note that I am speaking here not of diachronic evolution, but of a synchronic situation. It is

thus useful to note that in contexts which are not strictly mathematical διáγραµµα has clearly
the sense ‘diagram’ – e.g. Bacchius, in Musici Graeci ed. Janus, .–: ∆ιáγραµµα . . . τ¬
εστι; – Συστ�µατοv Îπ¾δειγµα. �τοι οÏτωv, διáγραµµá �στι σχ�µα �π¬πεδον . . .

 Here it should be clarified that the ‘diagram’ of a single proposition may be composed of a
number of ‘figures’, i.e. continuous configurations of lines. When these different figures are not
simply different objects discussed by a single proof, but are the same object with different cases
(e.g. Euclid’s Elements .), the problem of transmission becomes acute. Given our current
level of knowledge on the transmission of diagrams, nothing can be said on such diagrams.

 Such continuities may be singled out in the text by the formulae τéν αÍτéν Îποκειµ�νων/
κατασκευασθ�ντων, κα­ τà ëλλα τà αÍτà προκε¬σθω/κατασκευáσθω – see e.g. Euclid’s
Elements ., ; ., ; Archimedes, SC .; Apollonius, Conics .. I will argue below that
such continuities do not imply identities. Whether the continuity is explicitly noted or not does
not change this.



first (or vice versa). However, the basic configuration remains.
Furthermore, all the letters which appear in both diagrams stand
next to identical objects (some letters would occur in this dia-
gram but not in the other; but they would stand next to objects
which occur in this diagram but not in the other). Hence, wherever
the two diagrams describe a similar situation they may be used
interchangeably.

.. ‘Defective inclusion’ – diagrams may have a shared configura-
tion, but some letters change their objects between the two dia-
grams. Thus, it is no longer possible to interchange the diagrams,
even for a limited domain.

. ‘Similarity’ – the configuration is not identical, and letters switch
objects, but there is a certain continuity between the two diagrams.

‘F’. No identity at all – although the two propositions refer to a math-
ematical situation which is basically similar, the diagrams are
flagrantly different.

Conics  offers many cases of interpropositional continuity of subject
matter. I have graded them all. The results are: a single first, seven
., four ., six thirds and four fails. Disappointing; in fact, the results
are very heterogeneous and should not be used as a quantitative guide.
The important point is the great rarity of the first – which makes it
look like a fluke.

To put this evidence in a wider context, it should be noted that
Conics  is remarkable in having so many cases of continuities. More
often, subject matters change between propositions, ruling out identical
diagrams. An interesting case in the Archimedean corpus is CF /:
a . by my marking system, but the manuscripts are problematic.
Euclid’s schBma, used in the formula ‘and let the figure be drawn’ to
which I have referred in n.  above, is usually in the range –F.

There are no relevant cases in Autolycus; I shall now mention a case
from Aristarchus (and, in n. , Ptolemy).

The best way to understand the Greek practice in this respect is to
compare it with Heath’s editions of Archimedes and Apollonius. One
of the ways in which Heath mutilated their spirit is by making dia-
grams as identical as possible. This makes the individuated unit larger

 :  (identical to ); .:  (compared with ),  (),  (), – (); .: – (),  (),
 (); :  (),  (),  (),  (),  (),  (); F:  (),  (),  (),  ().

 In this I ignore Elements .–, which is a specimen from a strange context. In general, book
 works in hexads, units of six propositions proving more or less the same thing. It is difficult
to pronounce exactly on the principle of individuation in this book: are propositions individuated,
or are hexads?

Practices of the lettered diagram 



 The lettered diagram

than a given proposition: it is something like a ‘mathematical idea’.
But such identities ranging over propositions are Heath’s, not
Archimedes’ nor Apollonius’.

The complementary part of my hypothesis has to do with internal
relations. It is not at all rare for a proposition to use the same configu-
ration twice. For instance, this is very common in some versions of the
method of exhaustion, where the figure is approached from ‘above’
and from ‘below’. The significance of the diagram changes; yet, there
is no evidence that it has been redrawn.

The following case appears very strange at first glance: the construc-
tion of Aristarchus  begins with �στω τ¿ αÍτ¿ σχ�µα τô πρ¾τερον
– ‘let there be the same figure as before’. Having said that, Aristarchus
proceeds to draw a diagram which I would mark . – not at all the
identity suggested by his own words (figs. .a and .b)! How can we
account for this? I suggest the following: Aristarchus’ motivation is to
save space; that is, he does not want to give the entire construction
from scratch – that would be tedious. But then, saying ‘let A and B be
the same, C and D be different, and so on’ is just as tedious. So he
simply says ‘let it be the same’, knowing that his readers would not be
misled, for no reader would expect two diagrams to be literally ident-
ical. When you are told somebody’s face is ‘the same as Woody Allen’s’,
you do not accept this as literally true – the pragmatics of the situation
rule this out. Faces are just too individual. Greek diagrams are, as it
were, the faces of propositions, their metonyms.

.. Diagrams as metonyms of propositions: summary
I have claimed that diagrams are the metonyms of propositions; in
effect, the metonyms of mathematics (as mentioned in n.  above).
 See, e.g. Archimedes, CS  .,  .,  .,  .–,  .; SC . .;

QP  .. For examples from outside the method of exhaustion, see Apollonius’ Conics .
.–;  .–; Euclid’s Elements . .,  ..

 Aristarchus  .. Incidentally, this is another mathematical use of σχ�µα for ‘diagram’.
 I have not discussed Ptolemy’s diagrams in this subsection. Ptolemy often uses expressions like

‘using the same diagram’. Often the diagrams involved are very dissimilar (e.g. the first
diagram of Syntaxis ., in .–, referring to the last diagram of .). Sometimes Ptolemy
registers the difference between the diagrams by using expressions such as ‘using a similar
diagram’ (e.g. the first diagram of ., in .–, referring to the first diagram of .).
Rarely, diagrams are said to be ‘the same’ and are indeed practically identical (e.g. the fourth
diagram of ., in .–, referring to the third diagram of .). But this is related to
another fact: Ptolemy uses in the Syntaxis a limited type of diagram. Almost always, whether he
does trigonometry or astronomy, Ptolemy works with a diagram based on a single circle with
some lines passing through it. A typical Greek mathematical work has a wide range of dia-
grams; each page looks different. Ptolemy is more repetitive, more schematic. L. Taub sug-
gested to me that this should be related to Ptolemy’s wider programme – that of preparing a
‘syntaxis’, organised knowledge.



 Mueller () .

That diagrams were considered essential for mathematics is proved
by books , – of Euclid’s Elements. There, all the propositions are
accompanied by diagrams, as individual and – as far as the situations
allow – as elaborate as any geometrical diagram. Yet, in a sense, they
are redundant, for they no longer represent the situations discussed. As
Mueller points out, these diagrams may be helpful in various ways.
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Figure .a. Aristarchus .
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Figure .b. Aristarchus .

Yet, as he asserts, they no longer have the same function. They reflect
a cultural assumption, that mathematics ought to be accompanied by
diagrams. Probably line diagrams are not the best way to organise
proportion theory and arithmetic. Certainly symbolic conventions such
as ‘=’, for instance, may be more useful. The lettered diagram func-
tions here as an obstacle: by demanding one kind of representation, it



obstructs the development of other, perhaps more efficient repres-
entations. An obstacle or an aid: the diagram was essential.

. The semiotic situation

So far I have used neutral expressions such as ‘the point represented by
the letter’. Clearly, however, the cognitive contribution of the diagram
cannot be understood without some account of what is involved in
those ‘representations’ being given. This may lead to problems. The
semiotic question is a tangent to a central philosophical controversy:
what is the object of mathematics? In the following I shall try not to
address such general questions. I am interested in the semiotic relation
which Greek mathematicians have used, not in the semiotic relations
which mathematicians in general ought to use. I shall first discuss the
semiotic relations concerning letters, and then the semiotic relations
concerning diagrams.

.. The semiotics of letters

Our task is to interpret expressions such as �στω τ¿ µ�ν δοθ�ν σηµε´ον
τ¿ Α  – ‘let the given point be the Α’. To begin with, expressions such
as τ¿ Α, ‘the Α’, are not shorthand for ‘the letter Α’; Α is not a letter
here, but a point.  The letter in the text refers not to the letter in the
diagram, but to a certain point.

Related to this is the following. Consider this example, one of many:

�στω εÍθε´α � ΑΒ

(I will give a translation shortly).

This is translated by Heath as ‘Let AB be a straight line.’ This creates
the impression that the statement asserts a correlation between a sym-
bol and an object – what I would call ‘a moment of specification per se’.

Practices of the lettered diagram 

 By a process which eludes our knowledge, manuscripts for Diophantus developed a limited
system of shorthand, very roughly comparable to an abstract symbolic apparatus. Whether
this happened in ancient times we can’t tell; at any rate, Diophantus requires a separate study.

 Euclid’s Elements ., ..
 This can be shown through the wider practice of such abbreviations, which I discuss in

chapter .
 Euclid’s Elements ., .; Heath’s version is vol. ..
 Heath probably preferred, in this case, a slight unfaithfulness in the translation to a certain

stylistic awkwardness. It so happens that this slight unfaithfulness is of great semiotic signifi-
cance. It should be added that I know of no translation of Euclid which does not commit –
what I think is – Heath’s mistake. Federspiel (), in a context very different from the
present one, was the first to suggest the correct translation.



 The lettered diagram

In fact, this translation is untenable, since the article before ΑΒ can
only be interpreted as standing for the elided phrase ‘straight line’, so
Heath’s version reads as ‘let the straight line AB be a straight line’,
which is preposterous. In fact the word order facilitates the following
translation:

‘Let there be a straight line, [viz.] AB.’

First, what such clauses do not assert: they do not assert a relation
between a symbol and an object. Rather, they assert an action – in the
case above, the taking for granted of a certain line – and they proceed
to localise that action in the diagram, on the basis of an independently
established reference of the letters. The identity of ‘the AB ’ as a certain
line in the diagram is assumed by Euclid, rather than asserted by him.

So far, expressions use the bare article and a combination of one or
more letters. This is the typical group of expressions. There is another,
rarer, group of expressions, which may shed some light on the more
common one. Take the Hippocratic fragment, our evidence for earli-
est Greek mathematics  (fig. .):

Figure .. Hippocrates’ Third Quadrature.

 While the feminine gender, in itself, does not imply a straight line, the overall practice
demands that one reads the bare feminine article, ceteris paribus, as referring to a straight line.

 Becker (b) ..

�στω κËκλοv οØ διáµετροv �φ$ √ ΑΒ κ�ντρον δε αÍτοÖ �φ$ ö Κ

‘Let there be a circle whose diameter [is that] on which ΑΒ, its
centre [that] on which Κ’.

∆
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I translate by ‘on which’ a phrase which in the Greek uses the prepo-
sition epi with the dative (which is interchangeable with the genitive).

Our task is to interpret this usage.
Expressions such as that of the Hippocratic fragment are character-

istic of the earliest Greek texts which use the lettered diagram, that is,
besides the Hippocratic fragment itself, the mathematical texts of Aris-
totle. However, Aristotle – as ever – has his own, non-mathematical
project, which makes him a difficult guide. I shall first try to elucidate
this practice out of later, well-understood mathematical practice, and
then I shall return to Aristotle.

The Archimedean corpus contains several expressions similar to the
epi + dative. First, at SC . Archimedes  draws several schBmata, and
in order to distinguish between them, a Γ (or a special sign, according
to another manuscript) is written next to that schBma (fig. .). Later

 For the genitive in the Hippocratic fragment, see Simplicius, In Phys. ., ; .–; ..
It is interesting to see that in a number of cases the manuscripts have either genitive or dative,
and Diels, the editor, always chooses the dative: ., ; .,  – which gives the text a
dative-oriented aspect stronger than it would have otherwise (though Diels, of course, may be
right).

 E.g. Meteor. b, a, , b, , etc.; as well as many examples in contexts which are not
strictly mathematical, e.g. Meteor. a; HA a, a; Metaph. b. The presence
of a diagram cannot always be proved, and probably is not the universal case.

 Or some ancient mathematical reader; for our immediate purposes, the identification is not so
important.

 The same sign (astronomical sun) is used to indicate a scholion, in PE ., ..

Practices of the lettered diagram 
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 The lettered diagram
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Figure .. Archimedes’ CS .

 Undoubtedly this is the sense of σηµε´ον here. That the word becomes homonymous is not
surprising: we shall see in chapter  that, in the border between first-order and second-order
language, many such homonyms occur.

 For further examples of prepositions with letters, see Archimedes, SL ., ., ., .,
., ., ., ., ., .,  .; CS ., ., , ., .–, .,
.–, ., , ., ., –, ., , ., ., ., ., .,
., ., .; Apollonius, Conics ., .; Pappus, book , passim (in the context
‘êριθµο­ �φ$ ëν τà Α . . .’).

in the same proposition, at .–, when referring to that schBma, the
expression used is πρ¿v ö το Γ σηµε´ον – ‘that, next to which is the
sign  Γ’. This uses the preposition pros with the dative. I shall take CS
 .– next. In order to refer to areas bounded by ellipses, in turn
surrounded by rectangles, Archimedes writes the letters Α, Β inside the
ellipses (fig. .), then describes them in the following way: �στω
περιεχ¾µενα χωρ¬α Îπ¿ Àξυγων¬ου κÞνου τοµâv, �ν ο¶v τà Α, Β –
‘let there be areas bounded by ellipses, in which are Α, Β’. This uses
the preposition en with the dative. Proposition  in the same work refers,
first, to signs which stand near lines and, consequently, within rectangles
(fig. .). It comes as no surprise now that the rectangles are mentioned
at . as �ν ο¶v τà Θ, Ι, Κ, Λ – ‘in which the Θ, Ι, Κ, Λ’. More
interestingly, the lines in question are referred to at, e.g. .– as
�φ$ ëν . . . Θ, Ι, Κ, Λ – ‘on which Θ, Ι, Κ, Λ’ – where we finally get as
far as the epi + genitive. A certain order begins to emerge.
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Figure .. Archimedes’ CS .



When Archimedes deviates from the normal letter-per-point con-
vention, he often has to clarify what he refers to. A fuller expression is
needed, and this is made up of prepositions, relatives and letters. Now
the important fact is that the prepositions are used in a spatial sense –
as is shown by their structured diversity. Different prepositions and
cases are used in different spatial configurations. They describe various
spatial relationships between the letters in the diagram and the objects
referred to.

There is a well-known distinction, offered by Peirce, between three
types of signs. Some signs are indices, signifying by virtue of some
deictic relation with their object: an index finger is a good example.
Other signs are icons, signifying by virtue of a similarity with their
object: a portrait is a good example. Finally, some signs are symbols,
signifying by virtue of arbitrary conventions: most words are symbols.
We have gradually acquired evidence that in some contexts the letters
in Greek diagrams may be seen as indices rather than symbols.
My theory is that this is the case generally, i.e. the letter alpha signifies
the point next to which it stands, not by virtue of its being a symbol
for it, but simply because it stands next to it. The letters in the
diagram are useful signposts. They do not stand for objects, they stand
on them.

There are two different questions here. First, is this the correct
interpretation of epi + dative/genitive in the earliest sources? Second,
should this interpretation be universally extended?

The answer to the first question should, I think, be relatively straight-
forward. The most natural reading of epi is spatial, so, given the pres-
ence of a diagram which makes a spatial reading possible, I think
such a reading cannot be avoided. It is true that many spatial terms
are used metaphorically (if this is the right word), probably in all
languages. In English, one can debate whether ‘Britain should be
inside the European Union’, and it is clear that no spatial reading is
intended: ‘European Union’ is (in a sense) an abstract, non-spatial
object. The debate can be understood only in terms of inclusion in
a wide, non-spatial sense. But if you ask whether ‘the plate should be
inside the cupboard’, it is very difficult to interpret this in non-spatial
terms. When a spatial reading suggests itself at all, it is irresistible. I
have argued that the mathematical text is focused on the strictly spa-
tial object of the diagram. It is as spatial as the world of plates and
cupboards; and a spatial reading of the expressions relating to it is
therefore the natural reading.

Practices of the lettered diagram 



 The lettered diagram

The case of Aristotle is difficult. Setting aside cases where a refer-
ence to a diagram is clear, the main body of evidence is from the
Analytics. There, letters are used very often. When the use of those
letters is of the form ‘A applies to all B ’, etc., the bare article + letter is
used, i.e. the epi + dative/genitive is never used in such contexts. From
time to time, Aristotle establishes a relation between such letters and
‘real’ objects – A becomes man, B becomes animal, etc. Usually, when
this happens, the epi + dative/genitive is used at least with one of the
correlations, and should probably be assumed to govern all the rest.

A typical example is a:

�φ$ ö δ� τ¿ Γ ëνθρωποv

‘And [if that] on which Γ [is] man’ / ‘and [if that] which Γ stands
for [is] man’.

I have offered two alternative translations, but the second should
probably be preferred, for after all Γ does not, spatially speaking, stand
on the class of all human beings. It’s true that the antecedent of the
relative clause need not be taken here to be ‘man’. Indeed, often it
cannot, when the genders of the relative pronoun and the signified
object clash. But there are other cases, where the gender, or more
often the number of the relative pronoun do change according to the
signified object. The most consistent feature of this Aristotelian usage
is its inconsistency – not a paradox, but a helpful hint on the nature of
the usage. Aristotle, I suggest, uses language in a strange, forced way.
That his usage of letters is borrowed from mathematics is extremely
likely. That in such contexts the sense of the epi + dative/genitive
would have been spatial is as probable. In a very definite context –
that of establishing external references to letters of the syllogism –
Aristotle uses this expression in a non-spatial sense. Remember that
Aristotle had to start logic from scratch, the notions of referentiality
included. I suggest that the use of the epi + dative/genitive in the
Analytics is a bold metaphor, departing from the spatial mathematical

 Readers unfamiliar with Greek or Aristotle may prefer to skip the following discussion, which
is relatively technical.

 The letter Α is used more than , times; generally, the density of letters is almost compara-
ble to a mathematical treatise.

 There are about – very roughly – a hundred such examples in the Analytics, which I will not list
here. In pages – of APr. the examples are: a, b, , a–, b, , b, a,
b, a–, , b, b–, , , b–, –, a, –, b, a–, , , , b.

 E.g. APr. a: ®ατρικ� δ $ �φ$ οØ ∆.
 E.g. APr. a: �π¾µενα τô Α �φ$ ëν Β; APo. a: �µισε´α δυο´ν Àρθα´ν �φ$  v Β.



usage. Aristotle says, ‘let Α stand on “man’’ ’, implying ‘as mathemati-
cal letters stand on their objects and thus signify them’, meaning ‘let Α
signify “man’’ ’. The index is the metaphor through which the general
concept of the sign is broached. This, I admit, is a hypothesis. At
any rate, the contents referred to by Aristotle are like ‘Britain’ and
‘European Union’, not like ‘plates’ and ‘cupboards’; hence a non-
spatial reading becomes more natural.

Moving now to the next question: should the mathematical letters
be seen as indices even in the absence of the epi + dative/genitive and
its relatives?

The first and most important general argument in favour of this
theory is the correction offered above to Heath’s translation of expres-
sions such as �στω εÍθε´α � ΑΒ, ‘let there be a line, <namely> ΑΒ’. If
the signification of the ‘ΑΒ’ is settled independently, and antecedently
to the text, then it could be settled only via the letters as indices. The
setting of symbols requires speech; indices are visual. The whole line of
argument, according to which specification of objects in Greek math-
ematics is visual rather than verbal, supports, therefore, the indices
theory.

Next, consider the following. In the first proposition of the Conics –
any other example with a similar combination of genders will do – a
point is specified in the following way:

�στω κωνικ� �πιφáνεια,  v κορυφ� τ¿ Α σηµε´ον

‘Let there be a conic surface, whose vertex is the point Α’.

The point Α has been defined as a vertex, and it will function in the
proposition qua vertex, not qua point. Yet it will always be called, as in
the specification itself, τ¿ Α, in the neuter (‘point’ in Greek is neuter,
while ‘vertex’ is feminine). This is the general rule: points, even when
acquiring a special significance, are always called simply ‘points’, never,
e.g. ‘vertices’. The reason is simple: the expression τ¿ Α is a periphrastic
reference to an object, using the letter in the diagram, Α, as a signpost
useful for its spatial relations. This letter in the diagram, the actual
shape of ink, stands in a spatial relation to a point, not to a vertex – the
point is spatial, while the vertex is conceptual.
 Another argument for the ‘metaphor’ hypothesis is the fact that the epi + dative/genitive is not

used freely by Aristotle, but only within a definite formula: he never uses more direct expres-
sions such as κα­ Γ �π’ êνθρÞπ} – ‘and [if ] Γ stands for man’ – instead he sticks to the
cumbersome relative phrase. Could this reflect the fact that the expression is a metaphor, and
thus cannot be used outside the context which makes the metaphor work?

 ..

Practices of the lettered diagram 
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Third, an index (but not a symbol) can represent simultaneously
several objects; all it needs to do so is to point to all of them. Some
mathematical letters are polyvalent in exactly this way: e.g. in
Archimedes’ SC , the letters Ο, Ξ, stand for both the circles and for
the cones whose bases those circles are.

Fourth, my interpretation would predict that the letters in the text
would be considered as radically different from other items, whereas
otherwise they should be considered as names, as good as any. There
is some palaeographic evidence for this.

Fifth, a central thesis concerning Greek mathematics is that offered
by Klein (–), according to which Greek mathematics does not
employ variables. I quote: ‘The Euclidean presentation is not sym-
bolic. It always intends determinate numbers of units of measure-
ments, and it does this without any detour through a “general notion”
or a concept of a “general magnitude’’.’

This is by no means unanimously accepted. Klein’s argument is
philosophical, having to do with fine conceptual issues. He takes it
for granted that A is, in the Peircean sense, a symbol, and insists that it
is a symbol of something determinate. Quite rightly, the opposition
cannot see why (the symbolhood of A taken for granted) it cannot refer
to whatever it applies to. My semiotic hypothesis shows why A must
be determinate: because it was never a symbol to begin with. It is a
signpost, and signposts are tied to their immediate objects.

Finally, my interpretation is the ‘natural’ interpretation – as soon as
one rids oneself of twentieth-century philosophy of mathematics. My
proof is simple, namely that Peirce actually took letters in diagrams as
examples of what he meant by ‘indices’: ‘[W]e find that indices are
 Or a somewhat different case: Archimedes’ PE ., where Α, Β are simultaneously planes, and

the planes’ centres of gravity.
 It should be remembered that, as a rule, Greek papyri do not space words. P. Berol. ,

from c.–  (Mau and Mueller , table ): the continuous text is, as usual, unspaced.
Letters referring to the diagram are spaced from the rest of the text. P. Herc. , from the
last century , contains no marking off of letters, but the context is non-mathematical. PFay.
, later still, marks letters by superscribed lines, as does the In Theaetet. (early ? CPF  ,
n. ad .–.). This practice can often be seen in manuscripts. Generally, letters are
comparable to nomina sacra. Perhaps it all boils down to the fact that letters, just as nomina sacra,
are not read phonetically (i.e. ‘ΑΒ’ was read ‘alpha-bBta’, not ‘ab’)?

 The quotation is from the English translation (Klein : ). Klein has predominantly
arithmetic in mind, but if this is true of arithmetic, it must a fortiori be true of geometry.

 Unguru and Rowe (–: the synthetic nature of so-called ‘geometric algebra’), Unguru
(: the absence of mathematical induction; I shall comment on this in chapter , subsection
.) and Unguru and Fried (forthcoming: the synthetic nature of Apollonius’ Conics), taken
together, afford a picture of Greek mathematics where the absence of variables can be shown
to affect mathematical contents.

 Peirce () .



absolutely indispensable in mathematics . . . So are the letters A, B, C
etc., attached to a geometrical figure.’

The context from which the quotation is taken is richer, and one
need not subscribe to all aspects of Peirce’s philosophy of mathematics
there. But I ask a descriptive, not a prescriptive question. What sense
did people make of letters in diagrams? Peirce, at least, understood
them as indices. I consider this a helpful piece of evidence. After all,
why not take Peirce himself as our guide in semiotics?

.. The semiotics of diagrams
So far, I have argued that letters are primarily indices, so that repre-
sentations employing them cannot but refer to the concrete diagram.
A further question is the semiotics of the diagram itself: does it refer
to anything else, or is it the ultimate subject matter?

First, the option that the diagram points towards an ideal math-
ematical object can be disposed of. Greek mathematics cannot be
about squares-as-such, that is, objects which have no other property
except squareness, simply because many of the properties of squares
are not properties of squares-as-such; e.g. the square on the diagonal
of the square-as-such is the square-as-such, not its double. It is not
that speaking about objects-as-such is fundamentally wrong. It is sim-
ply not the same as speaking about objects. The case is clearer in
algebra. One can speak about the even-as-such and the odd-as-such:
this is a version of Boolean algebra. Modern mathematics (that is,
roughly, that of the last century or so) is characterised by an interest
in the theories of objects-as-such; Greek mathematics was not.

So what is the object of the proof ? As usual, I look to the practices
for a guide. We take off from the following. The proposition contains
imperatives describing various geometrically defined operations, e.g.:
κËκλοv γεγρáφθω – ‘let a circle have been drawn’. This is a certain
action, the drawing of a circle. A different verb is ‘to be’, as in the

 The impossibility of Greek mathematics being about Platonic objects has been argued by
Lear (), Burnyeat ().

 As the above may seem cryptic to a non-mathematician, I explain briefly. What is ‘the
essence’ of the odd and the even? One good answer may be, for instance, to provide their
table of addition: Odd + Odd = Even, O + E = O, E + O = O, E + E = E. One may then
assume the existence of objects which are characterised by this feature only. One would
thus ‘abstract’ odd-as-such and even-as-such from numbers. Such abstractions are typical of
modern mathematics.

 Of course, the import of Greek proofs is general. This, however, need not mean that the
proof itself is about a universal object. This issue will form the subject of chapter .

 Euclid’s Elements ., .–..
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following: �στω � δοθε´σα εÍθε´α πεπερασµ�νη � ΑΒ – ‘let the
given bounded straight line be ΑΒ’. The sense is that you identify
the bounded given straight line (demanded earlier in the proposition)
as ΑΒ. So this is another action, though here the activity is that of vis-
ually identifying an object instead of constructing it.

A verb which does not fit into this system of actions is noein, which
may be translated here as ‘to imagine’, as in the following:

νενο�σθω τοÖ �γγεγραµµ�νου πενταγÞνου τéν γων¬ων σηµε´α
τà Α, κτλ

‘Let the points Α, etc. be imagined as the points of the angles of the
inscribed pentagon’.

What is the point of imagination here? The one noticeable thing
is that the inscribed pentagon does not occur in the diagram, which
for once should, with all the difficulties involved, be taken to reflect
Euclid’s diagram (fig. .). On the logical plane, this means that

Figure .. Euclid’s Elements ..

 Ibid. ..  Euclid’s Elements ., .–.
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the pentagon was taken for granted rather than constructed (its
constructability, however, has been proved, so no falsity results).

Though not as common as some other verbs, noein is used quite
often in Greek mathematics. It is used when objects are either not
drawn at all, as in the example above, or when the diagram, for some
reason, fails to evoke them properly. The verb is relatively rare be-
cause such cases, of under-representation by the diagram, are rela-
tively rare. It is most common with three-dimensional objects (especially
the sphere, whose Greek representation is indeed indistinguishable from
a circle). Another set of cases is in ‘applied’ mathematics, e.g. when a
line is meant to be identified as a balance. Obviously the line is not a
balance, it is a line, and therefore the verb noein is used.

However, if the diagram is meant as a representation of some ideal
mathematical object, then one should have said that any object what-
ever was ‘imagined’. By delegating some, but not all, action to ‘imagi-
nation’, the mathematicians imply that, in the ordinary run of things,
they literally mean what they say: the circle of the proof is drawn, not
imagined to be drawn. It will not do to say that the circle was drawn in
some ideal geometrical space; for in that geometrical space one might as
easily draw a sphere. Thus, the action of the proof is literal, and the
object of the proof must be the diagram itself, for it is only in the diagram
that the acts of the construction literally can be said to have taken place.

This was one line of argument, showing that the diagram is the
object of the proposition. In true Greek fashion, I shall now show that
it is not the object of the proposition.

An obvious point, perhaps, is that the diagram must be false to some
extent. This is indeed obvious for many moderns, but at bottom this

 There are at least ten occurrences in Euclid’s Elements, namely . ., . ., .
lemma .,  .,  .,  . (that’s a nice page and line reference!),  .,
.,  ., .. There are three occurrences in Apollonius’ Conics , namely 
.,  .,  .. Archimedes’ works contain  occurrences of the verb in geo-
metrical contexts, which may be hunted down through Heiberg’s index. The verb is regularly
used in Ptolemy’s Harmonics. Lachterman () claims on p.  that the verb is used by Euclid
in book  alone (the existence of Greek mathematicians other than Euclid is not registered),
to mitigate, by its noetic function, the operationality involved in the generation of the sphere
and the cylinder. We all make mistakes, and mine are probably worse than Lachterman’s;
but, as I disagree with Lachterman’s picture of Greek mathematics as non-operational, I find
it useful to note that this argument of his is false.

 E.g. Archimedes, Meth. . – one of many examples. The use of the verb in Ptolemy’s
Harmonics belongs to this class.

 E.g. Mill (), vol.  : ‘Their [sc. geometrical lines’] existence, as far as we can form any
judgement, would seem to be inconsistent with the physical constitution of our planet at least,
if not of the universe.’ For this claim, Mill offers no argument.

Practices of the lettered diagram 
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is an empirical question. I imagine our own conviction may reflect
some deeply held atomistic vision of the world; there is some reason to
believe that atomism was already seen as inimical to mathematics in
antiquity. An ancient continuum theorist could well believe in the
physical constructability of geometrical objects, and Lear () thinks
Aristotle did. This, however, does not alter the fact that the actual
diagrams in front of the mathematician are not instantiations of the
mathematical situation.

That diagrams were not considered as exact instantiations of the
object constructed in the proposition can, I think, be proved. The
argument is that ‘construction’ corresponds, in Greek mathematics, to
a precise practice. The first proposition of Euclid’s Elements, for in-
stance, shows how to construct an equilateral triangle. This is medi-
ated by the construction of two auxiliary circles. Now there simply is
no way, if one is given only proposition . of the Elements, to construct
this triangle without the auxiliary circles. So, in the second proposi-
tion, when an equilateral triangle is constructed in the course of the
proposition, one is faced with a dilemma. Either one assumes that
the two auxiliary circles have been constructed as well – but how
many steps further can this be carried, as one goes on to ever more
complex constructions? Or, alternatively, one must conclude that the
so-called equilateral triangle of the diagram is a fake. Thus the equilat-
eral triangle of proposition . is a token gesture, a make-believe. It
acknowledges the shadow of a possible construction without actually
performing it.

We seem to have reached a certain impasse. On the one hand, the
Greeks speak as if the object of the proposition is the diagram. Verbs
signifying spatial action must be taken literally. On the other hand,
Greeks act in a way which precludes this possibility (quite regardless of
what their ontology may have been!), and the verbs signifying spatial
action must, therefore, be counted as metaphors.

To resolve this impasse, the ‘make-believe’ element should be stressed.
Take Euclid’s Elements .. This proves that a circle does not cut a
circle at more than two points. This is proved – as is the regular

 Plato’s peculiar atomism involved, apparently, some anti-geometrical attitudes (surprisingly
enough), for which see Aristotle, Metaph. aff. Somewhat more clear is the Epicurean
case, discussed in Mueller () –. The evidence is thin, but Mueller’s educated guess is
that Epicureans, as a rule, did assume that mathematics is false.

 Euclid’s Elements ., .–. Needless to say, the text simply says ‘let an equilateral triangle
have been set up on [the line]’, no hint being made of the problem I raise.



practice in propositions of this nature – through a reductio ad absurdum:
Euclid assumes that two circles cut each other at more than two points
(more precisely, at four points), and then derives an absurdity. The
proof, of course, proceeds with the aid of a diagram. But this is a
strange diagram (fig. .): for good geometrical reasons, proved in this
very proposition, such a diagram is impossible. Euclid draws what is
impossible; worse, what is patently impossible. For, let us remember,
there is reason to believe a circle is one of the few geometrical objects
a Greek diagram could represent in a satisfying manner. The diagram
cannot be; it can only survive thanks to the make-believe which calls a
‘circle’ something which is similar to the oval figure in fig. .. By the
force of the make-believe, this oval shape is invested with circlehood
for the course of the reductio argument. The make-believe is discarded
at the end of the argument, the bells of midnight toll and the circle
reverts to a pumpkin. With the reductio diagrams, the illusion is dropped
already at the end of the reductio move. Elsewhere, the illusion is main-
tained for the duration of the proof.

Take Pünktchen for instance. Her dog is lying in her bed, and she
stands next to it, addressing it: ‘But grandmother, why have you got
such large teeth?’ What is the semiotic role of ‘grandmother’? It is not
 Kästner (), beginning of chapter  (and elsewhere for similar phenomena, very ably

described. See also the general discussion following chapter ).
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metaphorical – Pünktchen is not trying to insinuate anything about
the grandmother-like (or wolf-like) characteristics of her dog. But nei-
ther is it literal, and Pünktchen knows this. Make-believe is a tertium
between literality and metaphor: it is literality, but an as-if kind of
literality. My theory is that the Greek diagram is an instantiation of its
object in the sense in which Pünktchen’s dog is the wolf – that the
diagram is a make-believe object. It shares with Pünktchen’s dog the
following characteristics: it is similar to the intended object; it is func-
tionally identical to it; what is perhaps most important, it is never
questioned.

. The practices of the lettered diagram: a summary

What we have seen so far is a series of procedures through which the
text maintains a certain implicitness. It does not identify its objects,
and leaves the identification to the visual imagination (the argument of
.). It does not name its objects – it simply points to them, via indices
(the argument of ..). Finally, it does not even hint what, ultimately,
its objects are; it simply works with an ersatz, as if it were the real thing
(the argument of ..). Obviously there is a certain vague assumption
that some of the properties of the ‘real thing’ are somehow captured
by the diagram, otherwise the mediation of the proposition via the
diagram would collapse. But my argument explaining why the dia-
gram is useful (because it is redefined, especially through its letters, as
a discrete object, and therefore a manageable one) did not deal with
the ontological question of why it is assumed that the diagram could in
principle correspond to the geometrical object. Undoubtedly, many
mathematicians would simply assume that geometry is about spatial,
physical objects, the sort of a thing a diagram is. Others could have
assumed the existence of mathematicals. The centrality of the dia-
gram, however, and the roundabout way in which it was referred to,
meant that the Greek mathematician would not have to speak up for
his ontology.

 Let me explain briefly why the indexical nature of letters is significant. This is because indices
signify references, not senses. Suppose you watch a production of Hamlet, with the cast wear-
ing soccer shirts. John, let’s say, is the name of the actor who plays Hamlet, and he is wearing
shirt number . Then asking ‘what’s your opinion of John?’ would refer, probably, to his
acting; asking ‘what’s your opinion of Hamlet?’ would refer, probably, to his indecision; but
asking ‘what’s your opinion of no. ?’ would refer ambiguously to both. Greek letters are like
numbers on soccer shirts, points in diagrams are like actors and mathematical objects are like
Hamlet.



Plato, in the seventh book of the Republic, prized the ontological
ambiguity of mathematics, especially of its diagrams. An ontological
borderline, it could confuse the philosophically minded, and lead from
one side of the border to the other. He was right. However, this very
ambiguity meant also that the mathematicians could choose not to
engage in the philosophical argument, to stick with their proofs and
mutual agreements – a point (as claimed above) conceded by Plato.

To conclude, then: there are two main ways in which the lettered
diagram takes part in the shaping of deduction. First, there is the
whole set of procedures for argumentation based on the diagram. No
other single source of evidence is comparable in importance to the
diagram. Essentially, this centrality reverts to the fact that the specifi-
cation of objects is done visually. I shall return to this subject in detail
in chapter . Second, and more complex, is this. The lettered diagram
supplies a universe of discourse. Speaking of their diagrams, Greek
mathematicians need not speak about their ontological principles. This
is a characteristic feature of Greek mathematics. Proofs were done at
an object-level, other questions being pushed aside. One went directly
to diagrams, did the dirty work, and, when asked what the ontology
behind it was, one mumbled something about the weather and went
back to work. This is not meant as a sociological picture, of course. I
am speaking not of the mathematician, but of the mathematical pro-
position. And this proposition acts in complete isolation, hermetically
sealed off from any second-order discourse. There is a certain single-
mindedness about Greek mathematics, a deliberate choice to do math-
ematics and nothing else. That this was at all possible is partly explicable
through the role of the diagram, which acted, effectively, as a substitute
for ontology.

It is the essence of cognitive tools to carve a more specialised niche
within general cognitive processes. Within that niche, much is auto-
matised, much is elided. The lettered diagram, specifically, contributed
to both elision (of the semiotic problems involved with mathematical
discourse) and automatisation (of the obtaining of a model through
which problems are processed).

 I will discuss this in chapter  below.
 I am not saying, of course, that the only reason why Greek mathematics became sealed off

from philosophy is the existence of the lettered diagram. The lettered diagram is not a cause
for sealing mathematics off from philosophy; it is an important explanation of how such a
sealing off was possible. I shall return to discussing the single-mindedness of Greek mathemat-
ics in the final chapter.

Practices of the lettered diagram 
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     
  

The lettered diagram is a distinctive mark of Greek mathematics, partly
because no other culture developed it independently. Indeed, it would
have been impossible in a pre-literate society and, obvious as this may
sound, this is an important truth. An explanatory strategy may suggest
itself, then: to explain the originality of the lettered diagram by the origi-
nality of the Phoenician script. The suggestion might be that alphabetic
letters are more suitable, for the purpose of the lettered diagram, than
pictograms, since pictograms suggest their symbolic content. The col-
oured constituents of some Chinese figures may be relevant here.

But of course such technological reductionism – everything the re-
sult of a single tool! – is unconvincing. The important question is how
the tool is used. This is obvious in our case, since the technology
involved the combination of two different tools. Minimally, the con-
texts of diagrams and of letters had to intersect.

The plan of this section is therefore as follows. First, the contexts
of diagrams and letters outside mathematics are described. Next, I
discuss two other mathematical tools, abaci and planetaria. These,
too, are ‘contexts’ within which the lettered diagram emerged, and
understanding their limitations will help to explain the ascendancy of
the lettered diagram.

. Non-mathematical contexts for the lettered diagram

.. Contexts of the diagram
As Beard puts it, ‘It is difficult now to recapture the sheer profusion
of visual images that surrounded the inhabitants of most Greek cities.’
Greeks were prepared for the visual.
 Babylonian and Chinese diagrams exist, of course – though Babylonian diagrams are less

central for Babylonian mathematics, or at least for Babylonian mathematical texts (Hoyrup
a), while Chinese diagrams belong to a different context altogether, of representations
endowed with rich symbolic significance (Lackner ). Neither refers to the diagram with a
system similar to the Greek use of letters. Typically, in the Babylonian case, the figure is
referred to through its geometric elements (e.g. breadth and width of rectangles), or it is
inscribed with numbers giving measurements of some of its elements (e.g. YBC , :
Neugebauer ).

 Also, while this point may sound obvious, it would have been impossible to make without
Goody (), Goody and Watt () on the role of writing for the historical development of
cognition and, generally, Goody’s œuvre; this debt applies to my work as a whole.

 See Chemla (), however, for an analysis of this practice: what is important is not the
individual colours, but their existence as a system. In fact, one can say that the Chinese took
colours as a convenient metaphor for a system.

 Beard () .



This is true, however, only in a limited sense. Greek elite education
included literacy, numeracy, music and gymnastics, but not drawing
or indeed any other specialised art. The educated Greek was experi-
enced in looking, not in drawing. Furthermore, the profusion of the
visual was limited to the visual as an aesthetic object, not as an in-
formative medium. There is an important difference between the two.
The visual as an aesthetic object sets a barrier between craftsman and
client: the passive and active processes may be different in kind. But in
the visual as a medium of information, the coding and decoding prin-
ciples are reciprocal and related. To the extent that I can do anything
at all with maps I must understand some of the principles underlying
them. On the other hand, while the ‘readers’ of art who know nothing
about its production may be deemed philistines, they are possible. The
visual as information demands some exchange between craftsmen and
clients, which art does not.

Two areas where the use of the visual qua information is expected
are maps and architectural designs. Herodotus gives evidence for world
maps, designed for intellectual (.ff.) and practical (.–) pur-
poses. Such maps could go as far back as Anaximander. Herodotus’
maps were exotic items, but we are told by Plutarch that average
Athenians had a sufficiently clear grasp of maps to be able to draw
them during the euphoric stage of the expedition to Sicily, in  .

Earlier, in , a passage in Aristophanes’ comedy The Clouds shows an
understanding of what a map is: schematic rather than pictorial,

preserving shapes, but not distances. The main point of Aristophanes’
passage is clear: though diagrammatic representations were under-
stood by at least some members of the audience, they were a technical,
specialised form. It may be significant that the passage follows immedi-
ately upon astronomy and geometry.

Our later evidence remains thin. There is a map in Aristotle’s
Meteorology, and periodoi gBs – apparently world maps – are included, as
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 Excluding mathematics itself – to the extent that it actually gained a foothold in education
(see chapter ).

 Agathemerus .; D.L. .–; Herodotus .. Anaxagoras may have added some visual
element to his book (D.L. . – the first to do so? See also DK A (Plutarch), A
(Clement) ). I guess – and I can do no more – that this was a cosmological map (both
Plutarch’s and Clement’s reference come from a cosmological context).

 Vit. Alc. .. The context is historically worthless, but the next piece of evidence could give
it a shade of plausibility.

 –: a viewer of the map is surprised to see Athens without juries!
 Shapes: , the ‘stretched’ island Euboea leads to a pun. Distances: –, the naive viewer

is worried about Sparta, which is too near.
 aff.
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mentioned already, in Theophrastus’ will. There is also some – very
little – epigraphic and numismatic evidence, discussed by Dilke. Most
interestingly, it seems that certain coins, struck in a military campaign,
showed a relief-map of its terrain. All these maps come from either
intellectual or propaganda contexts. As early as Herodotus, the draw-
ing of a map in pragmatic contexts was meant to impress rather than
to inform. Otherwise, much of the evidence comes from sources influ-
enced by mathematics.

Surprisingly, the same may be true of architectural designs. The
main tools of such design in classical times were either verbal descrip-
tions (sungraphai ), or actual three-dimensional and sometimes full-scale
models of repeated elements in the design ( paradeigmata). Rules of trade,
especially a modifiable system of accepted proportions, allowed the
transition from the verbal to the physical. There is a strong e silentio
argument against any common use of plans in early times. From Hel-
lenistic times onwards, these began to be more common, especially –
once again – in the contexts of persuasion rather than of information.
This happened when competition between architects forced them to
evolve some method of conveying their intentions beforehand, in an
impressive manner. Interestingly, the use of visual representations in
architecture is earliest attested in mechanics, which may show a math-
ematical influence.

What is made clear by this brief survey is that Greek geometry did
not evolve as a reflection upon, say, architecture. The mathematical
diagram did not evolve as a modification of other practical diagrams,
becoming more and more theoretical until finally the abstract geo-
metrical diagram was drawn. Mathematical diagrams may well have
been the first diagrams. The diagram is not a representation of some-
thing else; it is the thing itself. It is not like a representation of a
building, it is like a building, acted upon and constructed. Greek
geometry is the study of spatial action, not of visual representation.

However speculative the following point may be, it must be made.
The first Greeks who used diagrams had, according to the argument
above, to do something similar to building rather than to reflect upon
building. As mentioned above, the actual drawing involved a practical
skill, not an obvious part of a Greek education. Later, of course, the
lettered diagram would be just the symbol of mathematics, firmly

 D.L. .–.  Dilke () chapter .
 Johnston ().  The following is based on Coulton () chapter .
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 Which should not surprise us: the Greek letters as used in diagrams, being indices, were
inseparable from specific situations, unlike the modern symbolic ‘X’.

 This is not a feature of the manuscripts alone – which might have suggested a Byzantine
origin – since Galen reports the system,  ff.

 Galen  –. The system is due to Menecrates, of an early  provenance.
 See Turner () esp. –.  West () chapter .
 See Betz () for many examples, e.g. ,  ( letters),  (other symbols). For a discussion,

see Dornseiff ().

situated there; but at first, some contamination with the craftsman-like,
the ‘banausic’, must be hypothesised. I am not saying that the first
Greek mathematicians were, e.g. carpenters. I am quite certain they
were not. But they may have felt uneasily close to the banausic, a point
to which I shall return in the final chapter.

.. Contexts of letters as used in the lettered diagram
Our earliest direct evidence for the lettered diagram comes from out-
side mathematics proper, namely, from Aristotle. There are no obvi-
ous antecedents to Aristotle’s practice. Furthermore, he remained an
isolated phenomenon, even within the peripatetic school which he
founded. Of course, logical treatises in the Aristotelian tradition em-
ployed letters, as did a few quasi-mathematical works, such as the
pseudo-Aristotelian Mechanics. But otherwise (excluding the mathemati-
cally inclined Eudemus) the use of letters disappeared. The great mu-
sician Aristoxenus, just like the great mechanician Strato – both in
some sense followers of Aristotle – do not seem to have used letters.
The same is true more generally: the Aristotelian phenomenon does
not recur. And, of course, nothing similar to our common language
use of ‘X ’ and ‘Y ’ ever emerged in the Greek language.

Otherwise, few cases of special sign systems occur. At some date
between the fifth and the third centuries  someone inserted an
acrophonic shorthand into the Hippocratic Epidemics . Galen tells
us about another shorthand designed for pharmaceutical purposes,
this time based, in part, upon iconic principles (e.g. omicron for
‘rounded’). A refined symbolic system was developed for the pur-
poses of textual criticism. Referring as it did to letters, the system
employed ad hoc symbols. This system evolved in third-century Alex-
andria. Another case of a special symbolic system is musical notation,
attested from the third century  but probably invented earlier.

Letters, grouped and repeated in various ways, are among other sym-
bols considered to have magical significance. Finally, many systems
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of abbreviation are attested in our manuscripts, and while the vast
majority are Byzantine, ‘shorthand’ was known already in antiquity.

The common characteristic of all the above is their reflective, written
context. These are all second-order signs: signs used to refer to other
signs. Being indices to diagrams, the letters of Greek mathematics
form part of the same pattern.

What we learn is that the introduction of a special sign-system is
a highly literate act – this indeed should have been obvious to start
with. The introduction of letters as tools is a reflective use of literacy.
Certainly the social context within which such an introduction could
take place was the literate elite.

. Mathematical non-verbal contexts

Generally speaking, mathematical tools are among the most wide-
spread cultural phenomena of all, beginning with the numerical sys-
tem itself and going through finger-reckoning, abaci, etc., up to the
computer. Many of these tools have to do with calculation rather
than proof and are thus less important for my purposes here. Two
tools used by Greek mathematics, besides the lettered diagram, may
have been of some relevance to proof, and are therefore discussed in
the following subsections: these are abaci and planetaria.

It is natural to assume that not all tools can lead equally well to the
elaboration of scientific theories. To make a simple point, science de-
mands a certain intersubjectivity, which is probably best assisted through
language. A completely non-verbalised tool is thus unlikely to lead to
science. On the other hand, intersubjectivity may be aided by the
presence of a material object around which communication is organ-
ised. Both grounds for intersubjectivity operate with the lettered dia-
gram; I shall now try to consider the case for other tools.

 See, e.g. Milne (). The compendia used in mathematical manuscripts are usually
restricted to the scholia. It doesn’t seem that abbreviations were important in Greek math-
ematics, as, indeed, is shown by the survival of Archimedes in Doric.

 See, e.g. Dantzig (). Schmandt-Besserat (, vol. : ff.) is very useful.
 I am thinking of the Inca quipu (where strings represent arithmetical operations) as a tool

where verbalisation is not represented at all (as shown by the problematic deciphering) (Ascher
).



.. The abacus in Greek mathematics
The evidence is:

(a) Greeks used pebbles for calculations on abaci.

(b) Some very few hints suggest that something more theoretical in
nature was done with the aid of pebbles.

(c) It has been argued that a certain strand in early Greek arithmetic
becomes natural if viewed as employing pebbles. According to this
theory, some Greeks represented numbers by configurations of
pebbles or (when written) configurations of dots on the page: three
dots represent the number three, etc. However:

(d) Not a single arithmetical  text refers to pebbles or assumes a dot
representation of an arithmetical situation.

Philip argued that we should not pass too quickly from (b) to (c).
Certainly, Eurytus’ pebbles need not be associated with anything the
Greeks themselves would deem arithmetical. I shall argue below

that what is sometimes brought as evidence, Epicharmus’ fragment ,
belongs to (a) and not to (b), let alone (c). Similarly, Plato’s analogy of
mathematical arts and petteutikB – pebble games  – need not involve
any high-powered notion of mathematics.

This leaves us with two Aristotelian passages:

‘Like those who arrange numbers in shapes [such as] triangle and
square’;

‘For putting gnomons around the unit, and without it, in this [case]
the figure will always become different, in the other it [will be]
unity’.
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 Lang ().
 The only substantial early hints are the two passages from Aristotle quoted below (which can

be somewhat amplified for Eurytus by DK A: he somehow related animals(?) to numbers,
via pebble-representations).

 Becker (a). Knorr () goes much further, and Lefevre () adds the vital operational
dimension.

 Philip (), appendix , esp. –.  Chapter , subsection . –.
 Grg. cd; Lgs. d–d; also relevant is Euthyph. d.
 Metaph. b–: èσπερ ο¯ τοÌv êριθµοÌv ëγοντεv ε®v τà σχ�µατα τρ¬γωνον κα­

τετρáγωνον.
 Phys. a–: περιτιθεµ�νων γàρ τéν γνωµ¾νων περ­ τ¿ �ν κα­ χωρ­v Áτ� µ�ν ëλλο êε­

γ¬γνεσθαι τ¿ εµδοv, Áτ� δ� �ν. Both passages are mere clauses within larger contexts, and are
very difficult to translate.
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Philip maintained that, however arithmetical these passages may
sound, they are relatively late fourth-century and therefore might be
due to the great mathematical progress of that century, and so need
have nothing to do with the late fifth century. Knorr  quite rightly
objected that this makes no evolutionary sense: could that progress
lead to mathematics at the pebbles level? Knorr must be right, but he
does not come to terms with the fact that our evidence is indeed late
fourth-century. Moreover, the texts refer to Pythagoreans, in connec-
tion with Plato, and the natural reading would be that Aristotle refers
to someone roughly contemporary with Plato. Thus, our only evidence
for an arithmetical use of pebbles comes from a time when we know
that mathematically stronger types of arithmetic were available.

I certainly would not deny the role of the abacus for Greek arith-
metical concept-formation. The question is different: whether any
arithmetical proof, oral or written, was ever conducted with the aid
of pebbles. The evidence suggests, perhaps, oral proofs. Aristotle talks
about people doing things, not about anything he has read. Why this
should be the case is immediately obvious. Pebble manipulations admit
a transference to a written medium, as is amply attested in modern
discussions. However, the special advantage of pebbles over other
types of arithmetical representations is a result of their direct, physical
manipulations, which are essentially tied up with actual operations. It
is not the mere passive looking at pebbles which our sources mention:
they mention pebbles being moved and added. This must be lost in
the written medium, which is divorced from specific actions. Thus, it is
only natural that pebbles would lose their significance as the written
mode gained in centrality. They would stay, but in a marginal role,
emerging in a few asides by Plato and Aristotle, never as the centre of
mathematical activity.

 Knorr () –.
 Lefevre () offers a theory of such concept formation, with a stress on the general role of

operations for concept-formation.
 An important comparison is the following, which, however, being no Assyriologist, I will

express tentatively and in this footnote alone. The geometrical reconstructions offered by
Hoyrup (a) for Babylonian ‘algebra’ take the shape of operations upon spatial objects,
moved, torn and appended – following the verbs of the Akkadian text. I would say:

. The loss of (most) diagrams from Babylonian mathematics is related to this manner in
which Babylonian mathematics was visualised. The texts refer to objects which were
actually moved, not to inscribed diagrams.

. The visualisation was operational because the role of the text was different from what it is
in the Greek case. Babylonian mathematical texts are not context-independent; they are



.. Planetaria in Greek mathematics
The earliest and most extensive piece of evidence on planetaria in
Greek astronomy is Epicurus’ – biased – description of astronomical
practices, in On Nature . The description is of a school in Cyzicus,
where astronomers are portrayed as using organa, ‘instruments’, while
sullogizesthai, dialegesthai (i.e. reasoning in various ways), having dianoia

(translated by Sedley in context by ‘a mental model’) and epinoBsis
(‘thought-process’) and referring to a legomenon (something ‘said’ or ‘as-
serted’). What is the exact relation between these two aspects of their
practice, the instrument and the thought? One clue is the fact that
Epicurus claims that the aspects are irreconcilable because, according
to him, the assumption of a heavens/model analogy is indefensible.
This assumes that some dependence of the verbal upon the mechani-
cal is necessary. This dependence might be merely the thesis that ‘the
heavens are a mechanism identical to the one in front of us’, or it
might be more like ‘setting the model going, we see [e.g.] that some
stars are never visible, QED’. Where in the spectrum between these
options should we place the mathematicians of Cyzicus?

My following guess starts from Autolycus, a mathematician contem-
porary with this Epicurean text. Two of his astronomical works survive
– The Moving Sphere and The Risings and Settings. He never mentions any
apparatus, or even hints at such, even though The Risings and Settings
are practical astronomy rather than pure spherical mathematics. Nei-
ther, however, does he give many definitions or, generally, conceptual
hints. Furthermore, as mentioned above, his diagrams – belonging
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the internal working documents of scribes, who know the operational context in which
these texts are meant to be used.

. The different contexts and technologies of writing meant that in one case (Mesopotamia)
we have lost the visualisations alone, while in the other (Greek pebble arithmetic) we have
lost both visualisations and text.

. Babylonian mathematics is limited, compared to Greek mathematics, by being tied to the
particular operation upon the particular case; which reflects the difference mentioned
above.

 Sedley () –. The text survives only on papyrus.
 And not only them: the evidence for the use of planetaria (and related star-modelling mechan-

isms) in antiquity goes beyond any other archaeological evidence for mathematics. A truly
remarkable piece of evidence is the Antikytheran ‘planetarium’, described in Price (). See
there the evidence for sundials (), and for other planetaria (–).

 That the definitions of The Moving Sphere are spurious is probable, though not certain. See
Aujac ()  (in the edition of Autolycus used in this study: see Appendix, p. ), who
rejects them. If they are spurious, then they are the result of a perplexity similar to that which
the modern reader must feel. The definitions of The Risings and Settings explain the terminology
of observation, not the spatial objects discussed.
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as they do to the theory of spheres – are sometimes only very roughly
iconic. The reader – who may be assumed to be a beginner – is
immediately plunged into a text where there is a very serious difficulty
in visualising, in conceptualising. No doubt much of the difficulty would
have been solved by the Greek acquaintance with the sky. But a model
would certainly be helpful as well, at such a stage. After all, you cannot
turn the sky in your hands and trace lines on its surface. An object
which can be manipulated would contribute to concept-formation.

This acquaintance is more than the mere analogy claim – the model is
used to understand the heavens – yet this is weaker than actually using
the model for the sake of proof.

Timaeus excuses himself from astronomy by claiming that τ¿ λ�γειν
ëνευ δι$ Ãψεωv τοËτων α× τéν µιµηµáτων µáταιοv >ν ε°η π¾νοv
– ‘again, explaining this without watching models would be a point-
less task’. This, written by the staunch defender of mathematical
astronomy! It seems that models were almost indispensable for the
pedagogic level of astronomy. The actual setting out in writing of
mathematical astronomy, however, does not register planetaria. Again,
just as in the case of the abacus, the tool may have played a part in
concept-formation. And a further parallelism with the abacus is clear.
Why is it difficult for Timaeus to explain his astronomy? Why indeed
could he not have brought his planetaria? The answer is clear: the
written text filtered out the physical model.

In Plato’s case, of course, not only physical models were out of the
question: so were diagrams, since the text was not merely written,
but also the (supposed) reflection of conversation, so that diagrams
used by the speakers must be reconstructed from their speeches
(as is well known, e.g. for the Meno). Plato’s text is double-filtered.
More generally, however, we see that the centrality of the written
form functions as a filter. The lettered diagram is the tool which,
instead of being filtered out by the written mode, was made more
central and, with the marginalisation of other tools, became the
metonym of mathematics.

 For whatever its worth, it should be pointed out that Epicurus’ criticisms fasten upon the
concept-formation stage.

 This is certainly not the only purpose of building planetaria. Planetaria could do what maps
did: impress. Epicurus is setting out to persuade students away from Cyzicus. The plan-
etarium seems to have been set up in order to persuade them to come.

 Plato, Tim. d–.



 

Much of the argument of this chapter can be set out as a list of ways in
which the lettered diagram is a combination of different elements, in
different planes.

(a) On the logical plane, it is a combination of the continuous (dia-
gram) and the discrete ( letters), which implies,

(b) On the cognitive plane, a combination of visual resources (dia-
gram) and finite, manageable models (letters).

(c) On the semiotic plane, the lettered diagram is a combination of an
icon (diagram) and indices (letters), allowing the – constructive –
ambiguity characteristic of Greek mathematical ontology.

(d) On the historical plane, it is a combination of an art, almost
perhaps a banausic art (diagram) and a hyper-literate reflexivity
( letters).

The line of thought suggested here, that it is the fertile intersection
of different, almost antagonistic elements which is responsible for the
shaping of deduction, will be pursued in the rest of the book.

Summary 


