
    

P H Y S I C S F R O M F I S H E R I N F O R M A T I O N

A Uni®cation

This book de®nes and develops a unifying principle of physics, that of `extreme

physical information'. The information in question is, perhaps surprisingly, not

Shannon or Boltzmann entropy but, rather, Fisher information, a simple

concept little known to physicists.

Both statistical and physical properties of Fisher information are developed.

This information is shown to be a physical measure of disorder, sharing with

entropy the property of monotonic change with time. The information concept

is applied `phenomenally' to derive most known physics, from statistical

mechanics and thermodynamics to quantum mechanics, the Einstein ®eld

equations, and quantum gravity. Many new physical relations and concepts are

developed including new de®nitions of disorder, time and temperature. The

information principle is based upon a new theory of measurement, one which

incorporates the observer into the phenomenon that he/she observes. The

`request' for data creates the law that, ultimately, gives rise to the data. The

observer creates his or her local reality.

This fascinating work will be of great interest to students and researchers

from all areas of physics with an interest in new ways of looking at the subject.
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1

What is Fisher information?

Knowledge of Fisher information is not part of the educational background of

most physicists. Why should a physicist bother to learn about this concept?

Surely the (related) concept of entropy is suf®cient to describe the degree of

disorder of a given phenomenon. These important questions may be answered

as follows.

(a) The point made about entropy is true, but does not go far enough. Why not seek a

measure of disorder whose variation derives the phenomenon? The concept of

entropy cannot do this, for reasons discussed in Sec. 1.3. Fisher information will

turn out to be the appropriate measure of disorder for this purpose.

(b) Why should a physicist bother to learn this concept? Aside from the partial answer

in (a): (i) Fisher information is a simple and intuitive concept. As theories go, it is

quite elementary. To understand it does not require mathematics beyond differ-

ential equations. Even no prior knowledge of statistics is needed: this is easy

enough to learn `on the ¯y'. The derivation of the de®ning property of Fisher

information, in Sec. 1.2.3, is readily understood. (ii) The subject has very little

specialized jargon or notation. The beginner does not need a glossary of terms and

symbols to aid in its understanding. (iii) Most importantly, once understood, the

concept gives strong payoff ± one might call it `phenomen-all' ± in scope of

application. It's simply worth learning.

Fisher information has two basic roles to play in theory. First, it is a measure

of the ability to estimate a parameter; this makes it a cornerstone of the

statistical ®eld of study called parameter estimation. Second, it is a measure of

the state of disorder of a system or phenomenon. As will be seen, this makes it

a cornerstone of physical theory.

Before starting the study of Fisher information, we take a temporary

detour into a subject that will provide some immediate physical motivation

for it.
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1.1 On Lagrangians

The Lagrangian approach (Lagrange, 1788) to physics has been utilized now

for over 200 years. It is one of the most potent and convenient tools of

Ronald A. Fisher, 1929, from a photograph taken in honor of his election to Fellow of
the Royal Society. Sketch by the author.
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theory ever invented. One well-known proponent of its use (Feynman and

Hibbs, 1965) calls it `most elegant'. However, an enigma of physics is the

question of where its Lagrangians come from. It would be nice to justify and

derive them from a prior principle, but none seems to exist. Indeed, when a

Lagrangian is presented in the literature, it is often with a disclaimer, such as

(Morse and Feshbach, 1953) `It usually happens that the differential equa-

tions for a given phenomenon are known ®rst, and only later is the Lagrange

function found, from which the differential equations can be obtained.' Even

in a case where the differential equations are not known, often candidate

Lagrangians are ®rst constructed, to see if `reasonable' differential equations

result.

Hence, the Lagrange function has been principally a contrivance for getting

the correct answer. It is the means to an end ± a differential equation ± but

with no signi®cance in its own right. One of the aims of this book is to show, in

fact, that Lagrangians do have prior signi®cance. A second aim is to present a

systematic approach to deriving Lagrangians. A third is to clarify the role of

the observer in a measurement. These aims will be achieved through use of the

concept of Fisher information.

R. A. Fisher (1890±1962) was a researcher whose work is not well-known to

physicists. He is renowned in the ®elds of genetics, statistics and eugenics.

Among his pivotal contributions to these ®elds (Fisher, 1959) are the maximum

likelihood estimate, the analysis of variance, and a measure of indeterminacy

now called `Fisher information.' (He also found it likely that the famous

geneticist Gregor Mendel contrived the `data' in his famous pea plant experi-

ments. They were too regular to be true, statistically.) It will become apparent

that his form of information has great utility in physics as well.

Table 1.1 shows a list of Lagrangians (most from Morse and Feshbach,

1953), emphasizing the common presence of a squared-gradient term. In

quantum mechanics, this term represents mean kinetic energy, but why mean

kinetic energy should be present remains a mystery: Schroedinger called it

`incomprehensible' (Schroedinger, 1926).

Historical note: As will become evident below, Schroedinger's mysterious

Lagrangian term was simply Fisher's data information. May we presume from

this that Schroedinger and Fisher, despite developing their famous theories

nearly simultaneously, and with basically just the English channel between

them, never communicated? If they had, it would seem that the mystery should

have been quickly dispelled. This is an enigma.

What we will show is that, in general, the squared gradient represents a

phenomenon that is natural to all ®elds, i.e., information. In particular, it is the

amount of Fisher information residing in a variety of data called intrinsic data.
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The remaining terms of the Lagrangian will be seen to arise out of the

information residing in the phenomenon that is under measurement. Thus, all

Lagrangians consist entirely of two forms of Fisher information ± data

information and phenomenological information.

Table 1.1. Lagrangians for various physical phenomena. Where do these come

from and, in particular, why do they all contain a squared gradient term?

(Reprinted from Frieden and Soffer, 1995.)

Phenomenon Lagrangian

Classical Mech. 1
2
m

@q

@ t

� �2

ÿV

Flexible String or Compressible Fluid 1
2
r

@q

@ t

� �2

ÿc2=q:=q

" #
Diffusion Eq. ÿ=ø:=ø� ÿ . . .

SchroÈdinger W. E. ÿ "2

2m
=ø:=ø� ÿ . . .

Klein±Gordon Eq. ÿ "2

2m
=ø:=ø� ÿ . . .

Elastic W. E. 1
2
r _q2 ÿ . . .

Electromagnetic Eqs. 4
X4

n�1

uqn
:uqn ÿ . . .

Dirac Eqs. ÿ "2

2m
=ø:=ø� ÿ . . .� 0

General Relativity (Eqs. of motion)
X4

m,n�1

gmn(q(ô))
@qm

@ô

@qn

@ô

:
metric tensor

Boltzmann Law 4
@q(E)

@E

� �2

ÿ . . . , p(E) � q2(E)

Maxwell±Boltzmann Law 4
@q(v)

@v

� �2

ÿ . . . , p(v) � q2(v)

Lorentz Transformation (special relativity) @ iqn@ iqn (invariance of integral)

Helmholtz W. E. ÿ=ø:=ø� ÿ . . .
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The concept of Fisher information is a natural outgrowth of classical meas-

urement theory, as follows.

1.2 Classical measurement theory

1.2.1 The `smart' measurement

Consider the basic problem of estimating a single parameter of a system (or

phenomenon) from knowledge of some measurements. See Fig. 1.1. Let the

parameter have value è, and let there be N data values y1, . . . , yN � y in

vector notation, at hand. The system is speci®ed by a conditional probability

law p(yjè) called the `likelihood law'.

The data obey y � è� x, where the x1, . . . , xN � x are added noise values.

The data are used in an estimation principle to form an estimate of è which is

an optimal function è̂(y) of all the data; e.g., the function might be the sample

mean Nÿ1
P

n yn. The overall measurement procedure is `smart' in that è̂(y) is

on average a better estimate of è than is any one of the data observables.

The noise x is assumed to be intrinsic to the parameter è under measure-

ment. For example, è and x might be, respectively, the ideal position and

quantum ¯uctuations of a particle. Data y are, correspondingly, called intrinsic

data. No additional noise effects, such as noise of detection, are assumed

present here. (We later allow for such additional noise in Sec. 3.8 and Chap.

10.) The system consisting of quantities y, è, x is a closed, or physically

isolated, one.

1.2.2 Fisher information

This information arises as a measure of the expected error in a smart measure-

ment. Consider the class of `unbiased' estimates, obeying hè̂(y)i � è; these are

correct `on average'. The mean-square error e2 in such an estimate è̂ obeys a

relation (Van Trees, 1968; Cover and Thomas, 1991)

e2 I > 1, (1:1)

where I is called the Fisher `information'. In a particular case of interest

N � 1 (see below), this becomes

I �
�

dx p92(x)=p(x), p9 � dp=dx: (1:2)

(Throughout the book, integration limits are in®nite unless otherwise speci-

®ed.) Quantity p(x) denotes the probability density function for the noise value
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x. If p(x) is Gaussian, then I � 1=ó 2 with ó2 the variance (see derivation in

Sec. 8.3.1).

Eq. (1.1) is called the Cramer±Rao inequality. It expresses reciprocity

between the mean-square error e2 and the Fisher information I in the intrinsic

data. Hence, it is an expression of intrinsic uncertainties, i.e., in the absence of

outside sources of noise. It will be shown at Eq. (4.53) that the reciprocity

relation goes over into the Heisenberg uncertainty principle, in the case of a

single measurement of a particle position value è. Again, this ignores the

possibility of noise of detection, which would add in additional uncertainties to

the relation (Arthurs and Goodman, 1988; Martens and de Muynck, 1991).

The Cramer±Rao inequality (1.1) shows that estimation quality increases (e

decreases) as I increases. Therefore, I is a quality metric of the estimation

procedure. This is the essential reason why I is called an `information'. Eqs.

(1.1) and (1.2) derive quite easily, shown next.

1.2.3 Derivation

We follow Van Trees (1968). Consider the class of estimators è̂(y) that are

unbiased, obeying

Fig. 1.1. The parameter estimation problem of classical statistics. An unknown but
®xed parameter value è causes intrinsic data y through random sampling of a
likelihood law p(yjè). Then, the random likelihood law and the data are used to form
the estimator è̂(y) via an estimation principle. (Reprinted from Frieden, 1991, by
permission of Springer-Verlag Publishing Co.)
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hè̂(y)ÿ èi �
�

dy[è̂(y)ÿ è] p(yjè) � 0: (1:3)

Probability density function (PDF) p(yjè) describes the ¯uctuations in data

values y in the presence of the parameter value è. PDF p(yjè) is called the

`likelihood law'. Differentiate Eq. (1.3) @=@è, giving�
dy(è̂ÿ è)

@ p

@è
ÿ
�

dy p � 0: (1:4)

Use the identity

@ p

@è
� p

@ ln p

@è
(1:5)

and the fact that p obeys normalization. Then Eq. (1.4) becomes�
dy(è̂ÿ è)

@ ln p

@è
p � 1: (1:6)

Factor the integrand as�
dy

@ ln p

@è
����
p
p� �

[(è̂ÿ è)
����
p
p

] � 1: (1:7)

Square the equation. Then the Schwarz inequality gives�
dy

@ ln p

@è

� �2

p

" # �
dy(è̂ÿ è)2 p

� �
> 1: (1:8)

The left-most factor is de®ned to be the Fisher information I,

I � I(è) �
�

dy
@ ln p

@è

� �2

p, p � p(yjè), (1:9)

while the second factor exactly de®nes the mean-squared error e2,

e2 �
�

dy[è̂(y)ÿ è]2 p: (1:10)

This proves Eq. (1.1).

It is noted that I � I(è) in Eq. (1.9), i.e., in general I depends upon the

(®xed) value of parameter è. But note the following important exception to this

rule.

1.2.4 Important case of shift invariance

Suppose that there is only N � 1 data value taken so that p(yjè) � p(yjè).

Also, suppose that the PDF obeys a property

p(yjè) � p(yÿ è): (1:11)

This means that the ¯uctuations in y from è are invariant to the size of è, a
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kind of shift invariance. (This becomes an expression of Galilean invariance

when random variables y and è are 3-vectors instead.) Using condition (1.11)

and identity (1.5) in Eq. (1.9) gives

I �
�

dy
@ p(yÿ è)

@(yÿ è)

� �2�
p(yÿ è), (1:12)

since @=@è � ÿ@=@(yÿ è): Parameter è is regarded as ®xed (see above), so

that a change of variable x � yÿ è gives dx � dy. Equation (1.12) then

becomes Eq. (1.2), as required. Note that I no longer depends upon è. This is

convenient since è was unknown.

1.3 Comparisons of Fisher information with Shannon's form of entropy

A related quantity to I is the Shannon entropy (Shannon, 1948) H (called

Shannon `information' in this book). This has the form

H � ÿ
�

dxp(x) ln p(x): (1:13)

Like I, H is a functional of an underlying probability density function (PDF)

p(x). Historically, I predates the Shannon form by about 25 years (1922 vs.

1948). There are some known relations connecting the two information

concepts (Stam, 1959; Blachman, 1965; Frieden, 1991) but these are not

germane to our purposes. H can be, but is not always, the thermodynamic,

Boltzmann entropy.

The analytic properties of the two information measures are quite different.

Thus, whereas H is a global measure of smoothness in p(x), I is a local

measure. Hence, when extremized through variation of p(x), Fisher's form

gives a differential equation while Shannon's always gives directly the same

form of solution, an exponential function. These are shown next.

1.3.1 Global vs. local nature

For our purposes, it is useful to work with a discrete form of Eq. (1.13),

H � ÿÄx
X

n

p(xn) ln p(xn) � äH , Äx! 0: (1:14)

(Notation äH emphasizes that Eq. (1.14) represents an increment in informa-

tion.) Of course, the sum in Eq. (1.14) may be taken in any order. Graphically,

this means that if the curve p(xn) undergoes a rearrangement of its points

(xn, p(xn)), although the shape of the curve will drastically change the value of
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H remains constant. H is then said to be a global measure of the behavior of

p(xn).

By comparison, the discrete form of Fisher information I is, from Eq. (1.2),

I � Äxÿ1
X

n

[ p(xn�1)ÿ p(xn)]2

p(xn)
: (1:15)

If the curve p(xn) undergoes a rearrangement of points xn as above, dis-

continuities in p(xn) will now occur. Hence the local slope values

[ p(xn�1)ÿ p(xn)]=Äx will change drastically, and so the sum (1.15) will also

change strongly. Since I is thereby sensitive to local rearrangement of points, it

is said to have a property of locality.

Thus, H is a global measure, while I is a local measure, of the behavior of

the curve p(xn). These properties hold in the limit Äx! 0, and so apply to the

continuous probability density p(x) as well.

This global vs. local property has an interesting rami®cation. Because the

integrand of I contains a squared derivative p92 (see Eq. (1.2)), when the

integrand is used as part of a Lagrangian the resulting Euler±Lagrange

equation will contain second-order derivative terms p0. Hence, a second-order

differential equation results (see Eq. (0.25)). This dovetails with nature, in that

the major fundamental differential equations that de®ne probability densities or

amplitudes in physics are second-order differential equations. Indeed, the thesis

of this book is that the correct differential equations result when the informa-

tion I-based EPI principle of Chap. 3 is followed.

By contrast, the integrand of H in (1.13) does not contain a derivative.

Therefore, when this integrand is used as part of a Lagrangian the resulting

Euler±Lagrange equation will not contain any derivatives (see Eq. (0.22)); it

will be an algebraic equation, with the immediate solution that p(x) has the

exponential form Eq. (0.22) (Jaynes, 1957a,b). This is not, then, a differential

equation, and hence cannot represent a general physical scenario. The excep-

tions are those distributions which happen to be of an exponential form, as in

statistical mechanics. (In these cases, I gives the correct solutions anyhow; see

Chap. 7.)

It follows that, if one or the other of global measure H or local measure I is

to be used in a variational principle in order to derive the physical law p(x)

describing a general scenario, the preference is to the local measure I.

As all of the preceding discussion implies, H and I are two distinct

functionals of p(x). However, quite the contrary is true in comparing I with an

entropy that is closely related to H, namely, the Kullback±Leibler entropy. This

is discussed in Sec. 1.4.
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1.3.2 Additivity properties

It is of further interest to compare I and H in the special case of mutually

isolated systems, which give rise to independent data. As is well-known, the

entropy H obeys additivity in this case. Indeed, many people have been led to

believe that, because H has this property, it is the only functional of a

probability law that obeys additivity. In fact, information I obeys additivity as

well. This will be shown in Sec. 1.8.11.

1.4 Relation of I to Kullback±Leibler entropy

The Kullback±Leibler entropy G (Kullback, 1959) is a functional of (now) two

PDFs p(x) and r(x),

G � ÿ
�

dxp(x) ln [ p(x)=r(x)]: (1:16)

This is also called the `cross entropy' or `relative entropy' between p(x) and a

reference PDF r(x). Note that if r(x) is a constant, G becomes essentially the

entropy H. Also, G � 0 if p(x) � r(x). Thus, G is often used as a measure of

the `distance' between two PDFs p(x) and r(x). Also, in a multidimensional

case x! (x, y) the information G can be used to de®ne the mutual information

of Shannon (1948).

Now we show that the Fisher information I relates to G. Using Eq. (1.15),

with xn�1 � xn � Äx, I may be expressed as

I � Äxÿ1
X

n

p(xn)
p(xn � Äx)

p(xn)
ÿ 1

� �2

(1:17)

in the limit Äx! 0. Now quantity p(xn � Äx)=p(xn) is close to unity since Äx

is small. Therefore, the [´] quantity in (1.17),

p(xn � Äx)=p(xn)ÿ 1 � í, (1:18)

is small. Now for small í the expansion

ln (1� í) � íÿ í2=2 (1:19)

holds, or equivalently,

í2 � 2[íÿ ln (1� í)]: (1:20)

Then by Eqs. (1.18) and (1.20), Eq. (1.17) becomes

I � ÿ 2Äxÿ1
X

n

p(xn) ln
p(xn � Äx)

p(xn)

� 2Äxÿ1
X

n

p(xn � Äx)ÿ 2Äxÿ1
X

n

p(xn): (1:21)
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But each of the two far-right sums is Äxÿ1, by normalization, so that their

difference cancels, leaving

I � ÿ (2=Äx)
X

n

p(xn) ln
p(xn � Äx)

p(xn)
(1:22a)

! ÿ (2=Äx2)

�
dxp(x) ln

p(x� Äx)

p(x)
(1:22b)

� ÿ (2=Äx2)G[ p(x), p(x� Äx)] (1:22c)

by de®nition (1.16). Thus, I is proportional to the cross-entropy between the

PDF p(x) and its shifted version p(x� Äx).

1.4.1 Historical note

Vstovsky (1995) ®rst proved the converse of the preceding, that I is an

approximation to G. However, the expansion contains lower-order terms as

well, in distinction to the effect in (1.21) where our lower-order terms cancel

out exactly.

1.4.2 Exercise

One notes that the form (1.22b) is indeterminate 0=0 in the limit Äx! 0.

Show that one use of l'HoÃpital's rule does not resolve the limit, but two does,

and the limit is precisely the form (1.2) of I.

1.4.3 Fisher information as a `mother' information

Eq. (1.22b) shows that I is the cross-entropy between a PDF p(x) and its

in®nitesimally shifted version p(x� Äx). It has been noted (Caianiello, 1992)

that I more generally results as a `cross-information' between p(x) and

p(x� Äx) for a host of different types of information measures. Some

examples are as follows:

Rá � ln

�
dx p(x)á p(x� Äx)1ÿá ! ÿÄx22ÿ1á(1ÿ á)I , (1:22d)

for á 6� 1, where Rá is called the `Renyi information' measure (Amari, 1985);

and

W � cosÿ1

�
dx p1=2(x) p1=2(x� Äx)

� �
, W 2 ! Äx24ÿ1 I , (1:22e)

called `Wootters information' measure (Wootters, 1981). To derive these
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results, one only has to expand the indicated function of p(x� Äx) in the

integrand out to second order in Äx, and perform the indicated integrations,

using the identities
�

dxp9(x) � 0 and
�

dxp 0(x) � 0.

Hence, Fisher information is the limiting form of many different measures

of information; it is a kind of `mother' information.

1.5 Amplitude form of I

In de®nition (1.2), the division by p(x) is bothersome. (For example, is I

unde®ned since necessarily p(x)! 0 at certain x?) A way out is to work with a

real `amplitude' function q(x),

p(x) � q2(x): (1:23)

(Interestingly, probability amplitudes were used by Fisher (1943) independent

of their use in quantum mechanics. The purpose was to discriminate among

population classes.) Using form (1.23) in (1.2) directly gives

I � 4

�
dxq92(x): (1:24)

This is of a simpler form than (1.2) (no more divisions), and shows that I

simply measures the gradient content in q(x) (and hence in p(x)). The integrand

q92(x) in (1.24) is the origin of the squared gradients in Table 1.1 of

Lagrangians, as will be seen.

Representation (1.24) for I may be computed independent of the preceding.

One measure of the `distance' between an amplitude function q(x) and its

displaced version q(x� Äx) is the quadratic measure (Braunstein and Caves,

1994)

L2 �
�

dx[q(x� Äx)ÿ q(x)]2 ! Äx2

�
dx q92(x) � Äx24ÿ1 I (1:25)

after expanding out q(x� Äx) in ®rst-order Taylor series about point x (cf.

Eqs. (1.22c±e) preceding).

1.6 Ef®cient estimators

Classically, the main use of information I has been as a measure of the ability

to estimate a parameter. This is through the Cramer±Rao inequality (1.1), as

follows.

If the equality can be realized in Eq. (1.1), then the mean-square error will

go inversely with I, indicating that I determines how small (or large) the error

Ef®cient estimators 33



can be in any particular scenario. The question is, then, when is the equality

realized?

The left-hand side of Eq. (1.7) is actually an inner product between two

`vectors' A(y) and B(y),

A(y) � @ ln p

@è
����
p
p

, B(y) � (è̂ÿ è)
����
p
p

: (1:26a)

Here the continuous index y de®nes the yth component of each such vector (in

contrast to the elementary case where vector components are discrete). The

inner product of two vectors A, B is always less than or equal to its value when

the two vectors are parallel, i.e., when all their y-components are proportional,

A(y) � k(è)B(y), k(è) � const: (1:26b)

(Note that function k(è) remains constant since the parameter è is, of course,

constant.) Combining Eqs. (1.26a) and (1.26b) then provides a necessary

condition (i) for attaining the equality in Eq. (1.1),

@ ln p(yjè)

@è
� k(è)[è̂(y)ÿ è]: (1:27)

A condition (ii) is the previously used unbiasedness assumption (1.3).

A PDF scenario where (1.27) is satis®ed causes a minimized error e2
min that

obeys

e2
min � 1=I : (1:28)

The estimator è̂(y) is then called `ef®cient'. Notice that in this case the error

varies inversely with information I, so that the latter becomes a well-de®ned

quality metric of the measurement process.

1.6.1 Exercise

It is noted that only certain PDFs p(yjè) obey condition (1.27), among them

(a) the independent normal law p(yjè) � A
Q

n exp [ÿ(yn ÿ è)2=2ó 2], A �
const., and (b) the exponential law p(yjè) �Q n eÿ yn=è=è, yn > 0. On the

other hand, with N � 1, (c) a PDF of the form

p(yjè) � A sin2 (yÿ è), A � const:, jyÿ èj < ð

does not satisfy (1.27). Note that this PDF arises when the position è of a one-

dimensional quantum mechanical particle within a box is to be estimated.

Hence, this fundamental measurement problem does not admit of an ef®cient

estimate. Show these effects (a)±(c).

Also show that the estimators in (a) and (b) are unbiased, as required.
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1.6.2 Exercise

If the condition (1.27) is obeyed, and if the estimator is unbiased, then the

estimator function è̂(y) that attains ef®ciency is the one that maximizes the

likelihood function p(yjè) through choice of è (Van Trees, 1968). This is called

the maximum likelihood (ML) estimator. As an example, the ML estimators for

the problems (a) and (b) preceding are both the simple average of the data.

Show this.

Note the simpli®cation that occurs if one maximizes, instead of the like-

lihood, the logarithm of the likelihood. This log-likelihood law is also of

fundamental importance to quantum measurement theory; see Chap. 10.

1.7 Fisher I as a measure of system disorder

We showed that information I is a quality metric of an ef®cient measurement

procedure. Now we will ®nd that I is also a measure of the degree of disorder

of a system. High disorder means a lack of predictability of values x over its

range, i.e., a uniform or `unbiased' probability density function p(x). Such a

curve is shown in Fig. 1.2b. The curve has small gradient content (if it is

physically meaningful, i.e., is piecewise continuous). Simply stated, it is broad

and smooth. Then by (1.24) the Fisher information I is small.

Conversely, if a curve p(x) shows bias to particular x values then it exhibits

low disorder. See Fig. 1.2a. Analytically, the curve will be steeply sloped about

these x values, and so the value of I becomes large. The net effect is that I

measures the degree of disorder of the system.

On the other hand, the ability to measure disorder is usually associated with

the word `entropy'. For example, the Shannon entropy H is known to measure

the degree of disorder of a system. (Example: By direct use of Eq. (1.13), if

p(x) is normal with variance ó2 then H � ln ó � ln
��������
2ðe
p

. This shows that H

monotonically increases with the `width' ó of the PDF, i.e., with the degree of

disorder in the system.)

Since we found that I likewise measures the disorder of a system this suggests

that I ought to likewise be regarded as an `entropy'. However, the entropy H has

another important property: When H is, as well, the Boltzmann entropy, it obeys

the Second Law of thermodynamics, increasing monotonically with time,

dH(t)

dt
> 0: (1:29)

Does I, then, also change monotonically with time? A particular scenario

suggests that this is so.
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1.8 Fisher I as an entropy

We next show that, for a particular isolated system, I monotonically decreases

with time (Frieden, 1990). All measurements and PDF laws are now taken at a

speci®ed time t, so that the system PDF now has the form p(xjt), i.e., the

probability of reading (x, x� dx) conditional upon a time (t, t � dt).

1.8.1 Paradigm of the broken urn

Consider a scenario where many particles ®ll a small urn. Imagine these to be

ideal, point masses that collide elastically and that are not in an exterior force

®eld. We want a smart measurement of their mean horizontal position è.

Accordingly, a particle at horizontal position y is observed, y � è� x, where x

is a random ¯uctuation from è. De®ne the mean-square error e2(t) �
h[èÿ è̂(y)]2i due to repeatedly forming estimates è̂(y) of è within a small time

interval (t, t � dt). How should error e vary with t?

Initially, at t � 0, the particles are within the small urn. Hence, any observed

value y should be near to è; then, any good estimate è̂(y) will likewise be close

to è, and resultingly e2(0) will be small. Next, the walls of the container are

broken, so that the particles are free to randomly move away. They will follow,

of course, the random walk process which is called Brownian motion (Papoulis,

1965).

Consider a later time interval (t, t � dt). For Brownian motion, the PDF

p(xjt) is Gaussian with a variance ó 2 � Dt, D � const:, D > 0. For a Gaus-

Fig. 1.2. Degree of disorder measured by I values. In (a), random variable x shows
relatively low disorder and large I (gradient content). In (b), x shows high disorder and
small I. (Reprinted from Frieden and Soffer, 1995.)
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sian PDF, I � 1=ó 2 (see derivation in Sec. 8.3.1). Then I � I(t) � 1=Dt, or I

decreases with t.

Can this result be generalized?

1.8.2 The `I-theorem'

Eq. (1.29) states that H increases monotonically with time. This result is

usually called the `Boltzmann H-theorem.' In fact there is a corresponding `I-

theorem'

dI(t)

dt
< 0: (1:30)

1.8.3 Proof

Start with the cross-entropy representation (1.22b) of I(t),

I(t) � ÿ2 lim
Äx!0

Äxÿ2

�
dx p ln ( pÄx=p)

p � p(xjt), pÄx � p(x� Äxjt):
(1:31)

Under certain physical conditions, e.g., `detailed balance', short-term correla-

tion, shift-invariant statistics (Gardiner, 1985; Reif, 1965; Risken, 1984) p

obeys a Fokker±Planck differential equation

@ p

@ t
� ÿ d

dx
[D1(x, t) p]� d2

dx2
[D2(x, t) p] (1:32)

where D1(x, t) is a drift function and D2(x, t) is a diffusion function. Suppose

that pÄx also obeys the equation (Plastino and Plastino, 1996). Risken (1984)

shows that two PDFs, such as p and pÄx, that obey the Fokker±Planck equation

have a cross-entropy

G(t) � ÿ
�

dx p ln ( p=pÄx) (1:33)

that obeys an H-theorem (1.29),

dG(t)

dt
> 0: (1:34)

It follows from Eq. (1.31) that I, likewise, obeys an I-theorem (1.30). Thus, the

I-theorem and the H-theorem both hold under certain physical conditions.

There also is a possibility that physical conditions exist for which one

theorem holds to the exclusion of the other. From the empirical viewpoint that

the I-theorem leads to the derivation of a much wider range of physical laws
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(as in Chaps. 4±11) than does the H-theorem, such conditions must exist;

however, they are yet to be found.

It should be remarked that the I-theorem was ®rst proven (Plastino and

Plastino, 1996) from the direct de®ning form (1.2) for I (i.e., without recourse

to the cross-entropy form (1.22b)).

1.8.4 Rami®cation to de®nition of time

The I-theorem (1.30) is an extremely important result. It states that the Fisher

information of a physical system can only decrease (or remain constant) in

time. Combining this with Eq. (1.28) indicates that e2
min must increase, so that

even in the presence of ef®cient estimation the quality of estimates must

decrease with time. This seems to be a reasonable alternative statement of the

Second Law of thermodynamics. If, by the Second Law, the disorder of a

system (as measured by the Boltzmann entropy) must increase, then the

disorder of any measuring system must increase as well. This must degrade its

use as a measuring instrument, causing the error e2
min to increase. On this basis,

one could estimate the age of an instrument by simply observing how well it

measures.

Thus, I is a measure of physical disorder that has its mathematical roots in

estimation theory. By the same token, one may regard the Boltzmann entropy

H to be a measure of physical disorder that has its mathematical roots in

communication theory (Shannon, 1948). Communication theory plays a com-

plementary role to estimation theory: the former describes how well messages

can be transmitted, in the presence of given errors in the channel (system noise

properties); the latter describes how accurately messages may be estimated,

also in the presence of given errors in the channel.

If I really is a physical measure of system disorder, it ought to somehow

relate to temperature, pressure, and all other extrinsic parameters of thermo-

dynamics. This is, in fact, the subject of Secs. 1.8.5±1.8.7.

Next, consider the concept of the ¯ow of thermodynamic time (Zeh, 1992;

Halliwell et al., 1994). This concept is intimately tied to that of the Boltzmann

entropy: an increase in the latter de®nes the positive passage of Boltzmann

time. The I-theorem suggests an alternative de®nition to Boltzmann time: a

decrease in I de®nes an increase in `Fisher time'. However, whether the two

times always agree is an open question. In numerical experiments on randomly

perturbed PDFs (Frieden, 1990), usually the resulting perturbations äI went

down when äH went up, i.e., both measures agreed that disorder (and time)

increased. They also usually agreed on decreases of disorder. However, there

were disagreements about 1% of the time.
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1.8.5 Rami®cation to temperature

The Boltzmann temperature (Reif, 1965) T is de®ned as 1=T � @H B=@E,

where HB is the Boltzmann entropy of an isolated system and E is its energy.

Consider two systems A and A9 that are in thermal contact, but are otherwise

isolated, and are approaching thermal equilibrium. The Boltzmann temperature

has the important property that after thermal equilibrium is attained, a situation

T � T 9,
1

T
� @H B

@E
,

1

T 9
� @H9B
@E9

(1:35)

of equal temperature results. Let us now look at the phenomenon from the

standpoint of information I, i.e. without recourse to the Boltzmann entropy.

Denote the total information in system A by I, and that of system A9 by I9.

The parameters è, è9 to be measured are the total energies E and E9 of the two

systems. The corresponding measurements are YE, YE9. Because of the I-

theorem (1.30), both I and I9 should approach minimum values as time

increases. We will show later that, since the two systems are physically

separated and hence independent in their energy data YE, YE9, the Fisher

information state of the two is the sum of the two I values. Hence, the I-

theorem states that, after an in®nite amount of time, the information of the

combined system is

I(E)� I9(E9) � Min: (1:36)

On the other hand, energy is conserved, so that

E � E9 � C, (1:37)

C � constant. (Notice that this is a deterministic relation between the two ideal

parameter values, and not between the data; if it held for the data, then the

prior assumption of independent data would have been invalid.)

The effect of (1.37) on (1.36) is

I(E)� I9(C ÿ E) � Min: (1:38)

We now de®ne a generalized `Fisher temperature' Tè as

1

Tè
� ÿkè

@ I

@è
: (1:39)

Notice that è is any parameter under measurement. Hence, there is a Fisher

`temperature' associated with any parameter to be measured. From (1.39), Tè
simply measures the sensitivity of information level I to a change in system

parameter è. The constant kè gives each Tè value the same units. A relation

between the two temperatures T and Tè is found below for a perfect gas.

Consider the case in point, è � E, è9 � C ÿ è. The temperature Tè is now

an energy temperature TE. Differentiating Eq. (1.38) @=@E gives
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@ I

@E
� @ I9

@E9
(ÿ1) � 0 or TE � TE9 (1:40)

by (1.39). At equilibrium both systems attain a common Fisher energy tem-

perature. This is analogous to the Boltzmann (conventional) result (1.35).

1.8.6 Exercise

The right-hand side of Eq. (1.39) is impractical to evaluate (although still of

theoretical importance) if I is close to independent of è. This occurs in close to a

shift invariant case (1.11), (1.12) where the resulting I is close to the form (1.2).

The key question is, then, whether the shift invariance condition Eq. (1.11) holds

when è � E and a measurement yE is made. The total number N of particles

comprising the system is critical here. If N � 10 or more, then (a) the PDF

p(yEjE) will tend to obey the central limit theorem (Frieden, 1991) and, hence,

be close to Gaussian in the shifted random variable yE ÿ E. An I results that is

close to the form (1.2). At the other extreme, (b) for small N the PDF can

typically be ÷2 (assuming that the N � 1 law is Boltzmann, i.e., exponential).

Here, shift invariance would not hold. Show (a) and (b).

1.8.7 Perfect gas law

So far we have de®ned concepts of time and temperature on the basis of Fisher

information. We now show that the perfect gas law may likewise be derived on

this basis. This will also permit the (so far) unknown parameter k E to be

evaluated from known parameters of the system.

Consider an ideal gas consisting of M identical molecules con®ned to a

volume V and kept at Fisher temperature TE. We want to know how the pressure

in the gas depends upon the extrinsic parameters V and TE. The plan is to ®rst

compute the temporal mean pressure p within a small volume dV � Adx of

the gas and then integrate through to get the macroscopic answer.

Suppose that the pressure results from a force F that is exerted normal to

area A and through the distance dx, as in the case of a moving piston. Then

(Reif, 1965)

p � F

A

dx

dx
� ÿ @E

@V
(1:41)

where the minus sign signi®es that energy E is stored in reaction to work done

by the force. Using the chain rule, Eq. (1.41) becomes

p � ÿ @E

@ I

@ I

@V
� k ETE

@ I

@V
, (1:42)
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the latter by de®nition (1.39) with è � E. Here dI is the information in a data

reading dyE of the ideal energy value dE. In general, quantities p, dI and TE

can be functions of the position r of volume dV within a gas. Multiplying

(1.42) by dV gives

p(r)dV � k ETE(r)dI(r) (1:43)

with the r-dependence now noted. Near equilibrium the gas should be well

mixed and homogeneous, such that p and T are independent of position r. Then

Eq. (1.43) may be directly integrated to give

pV � k ETE I : (1:44)

Note that I � � dI(r) is simply the total information due to many independent

data readings dyE. This again states that the information adds under indepen-

dent data conditions.

The dependence (1.44) of p upon V and TE is of the same form as the known

equation of state of the gas

pV � MkT , (1:45)

where k is the Boltzmann constant and T is the ordinary (Boltzmann) tempera-

ture. Comparing Eqs. (1.44) and (1.45), exact compliance is achieved if k ETE

is related to kT as

kT

k ETE

� �
� I=M , (1:46)

the information per molecule. The latter should be a constant for a well-mixed

gas.

These considerations seem to imply that thermodynamic theory may be

developed completely from the standpoint of Fisher entropy, without recourse

to the well-known properties of the Boltzmann entropy. At this point in time,

the question remains an open one.

1.8.8 Rami®cation to derivations of physical laws

The uni-directional nature of the I-theorem (1.30) implies that, as t!1,

I(t) � 4

�
dxq92(xjt)! Min: (1:47)

Here we used the shift-invariant form (1.24) of I. The minimum would be

achieved through variation of the amplitude function q(xjt). It is convenient,

and usual, to accomplish this through use of an Euler±Lagrange equation (see

Eq. (0.13)). The result would de®ne the form of q(xjt) at temporal equilibrium.

In order for this approach to be tenable it would need to be modi®ed by

appropriate input constraint properties of q(xjt) such as normalization of
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p(xjt). Other constraints, describing the particular physical scenario, must also

be tacked on. Examples are ®xed values of the means of certain physical

quantities (case á � 2 below). Such constraints may be appended to principle

(1.47) by using the method of Lagrange undetermined multipliers, Eq. (0.39):

I �
XKo

k�1

ëk

�
dxqá(xjt) f k(x) � Extrem:, (1:48a)

�
dxqá(xjt) f k(x) � Fk , k � 1, . . . , Ko, á � Const: (1:48b)

The kernel functions f k(x), constraint exponent á and data values Fk are

assumed known. The multipliers ëk are found such that the constraint equations

(1.48b) are obeyed. See also Huber (1981).

The most dif®cult step in this approach is deciding what constraints to utilize

(called the `input' constraints). The solution depends critically upon the choice

of input constraints, and yet they cannot simply be all that are known to the

user. They must be the particular subset of constraints that are actually imposed

by nature. In general, this is dif®cult to know a priori. Our own approach ± the

EPI principle described in Chap. 3 and applied in Chaps. 4±9 and 11 ± is, in

fact, of the Lagrange form (1.48a). However, it attempts to free the problem of

the arbitrariness of the constraint terms. For this purpose, a physical rationale

for the terms is utilized.

It is important to verify that a minimum (1.47) will indeed be attained in

solution of the constrained variational problem. A maximum or point of

in¯ection could conceivably result instead, defeating our aims. For this

purpose, we may use Legendre's condition for a minimum (Sec. 0.3.3): Let L
denote the integrand (or Lagrangian) of the total integral to be extremized. In

our scalar case, if

@2L
@q92

. 0 (1:49)

the solution will be a minimum. From Eqs. (1.47) and (1.48a), our Lagrangian

is

L � 4q92 �
X

k

ëk qá f k: (1:50)

Using this in Eq. (1.49) gives

@2L
@q92

� �8, (1:51)

showing that a minimum is indeed attained.

The foregoing assumed that coordinate x is real and a scalar. However, most
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scenarios will involve multiple coordinates due to Lorentz covariance require-

ments. One or more of these are purely imaginary. For example, in Chap. 4 we

use a space coordinate x that is purely imaginary. The same analysis as the

preceding shows that in this case the second derivative (1.51) is negative, so

that a maximum is instead attained in this coordinate. However, others of the

coordinates are real and, hence, tend to give a mimimum. Obviously Legendre's

condition cannot give a unique answer in this scenario, and other criteria for

the determination must be used. The question of maximum or minimum under

such general conditions remains an open question.

Note that these results apply to all physical applications of our variational

principle (as formed in Chap. 3). These applications only differ in their

effective constraint terms, none of which contains terms in q92.

When I is minimized by the variational technique, q(xjt) tends to be

maximally smooth (Sect. 1.7). We saw that this describes a situation of

maximum disorder. The Second Law of thermodynamics causes, as well,

increased disorder. In this behavior, then, the I-theorem (1.30) acts like the

Second Law.

1.8.9 Is the I-theorem equivalent to the H-theorem?

We showed at Eq. (1.34) that if a PDF p(x) and its in®nitesimally shifted

version p(x� Äx) both obey the Fokker±Planck equation, then the I-theorem

follows. On the other hand, Eq. (1.34) with Äx ®nite is an expression of the H-

theorem. Hence, the two theorems have a common pedigree, so to speak. Are,

then, the two theorems equivalent? In fact they are not equivalent because the

I-theorem is a limiting form (as Äx! 0) of Risken's H-theorem. Taking the

limit introduces the derivative p9 of the PDF into the integrand of what was H,

transforming it into the form Eq. (1.2) of I. The presence of this derivative in I,

and its absence in H, has strong mathematical implications. One example is as

follows.

The equilibrium solutions for p(x) that are obtained by extremizing Fisher I

(called the EPI principle below) are, in general, different from those obtained

by the corresponding use H � max: of entropy. See Sec. 1.3.1. In fact, EPI

solutions and H � max. solutions agree only in statistical mechanics; this is

shown in Appendix A.

It is interesting that correct solutions via EPI occur even for PDFs that do

not obey the Fokker±Planck equation. By the form of Eq. (1.32), the time

rate of change of p only depends upon the present value of p. Hence, the

process has short-term memory (see also Gardiner, 1991, p. 144). However,

EPI may be used to derive the 1= f power spectral noise effect (Chap. 8), a
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law famous for exhibiting long-term memory. Also, the relativistic electron

obeys an equation of continuity of ¯ow @ p=@ t � c=:(ø�[á]ø), p � ø�ø
(Schiff, 1955), where all quantities are de®ned in Chap. 4. This does not

quite have the form of a Fokker±Planck Eq. (1.32) (compare right-hand

sides). However, EPI may indeed be used to derive the Dirac equation of the

electron (Chap. 4).

These considerations imply that the Fokker±Planck equation is a suf®cient,

but not necessary, condition for validity of the EPI procedure. An alternative

condition of wider scope must exist. Such a one is the unitary condition to be

discussed in Secs. 3.8.5 and 3.8.7.

1.8.10 Flow property

Since information I obeys an I-theorem Eq. (1.30), temperature effects Eqs.

(1.39) and (1.40), and a gas law Eq. (1.44), indications are that I is every bit as

`physical' an entity as is the Boltzmann entropy. This includes, in particular, a

property of temporal ¯ow from an information source to a sink. This property

is used in our physical information model of Sec. 3.3.2.

1.8.11 Additivity property

A vital property of the information I is that of additivity: the information from

mutually isolated systems adds. This is shown as follows.

Suppose that we have N copies of the urn mentioned in Sec. 1.8.1. See Fig.

1.3. As before, each urn contains particles that are undergoing Brownian

motion. (This time the urns are not broken.) Each sits rigidly in place upon a

table that moves with an unknown velocity è in the X-direction, relative to the

laboratory. A particle is randomly selected in each urn, and its total X-

component laboratory velocity value yn is measured. Let xn denote the

particle's intrinsic speed, i.e., relative to its urn, with (xn, n � 1, . . . , N ) � x.

The x are random because of the Brownian motion. Assuming nonrelativistic

speeds, the intrinsic data (yn, n � 1, . . . , N) � y obey simply

y � è� x: (1:52)

Assume that the urns are physically isolated from one another by the use of

barriers B (see Fig. 1.3), so that there is no interaction between particles from

different urns. Then the data y are independent. This causes the likelihood law

to break up into a product of factors (Frieden, 1991)
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p(yjè) �
YN
n�1

pn(ynjè), (1:53)

where pn is the likelihood law for the nth observation.

We may now compute the information I in the independent data y. By

Eq. (1.53)

ln p �
X

n

ln pn, p � p(yjè), pn � pn(ynjè),

so that
@ ln p

@è
�
X

n

1

pn

@ pn

@è
: (1:54)

Squaring the latter gives
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1
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�
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� �2

(1:55)

where the last sum is for indices m � n. Then the de®ning Eq. (1.9) for I gives,

with the substitutions Eqs. (1.53), (1.55),

I �
�

dy
Y

k

pk

X
mn

m 6�n

1

pm

1

pn

@ pm

@è

@ pn

@è
�
X

n

1

p2
n

@ pn

@è

� �2
24 35: (1:56)

Now use the fact that, in this equation, the probabilities pk for k 6� m or n

integrate through as simply factors 1, by normalization. The remaining factors

in
Q

k pk are then pm pn for the ®rst sum, and just pn for the second sum. The

result is, after some cancellation,

Fig. 1.3. N urns are moving at a common speed è. Each contains particles in Brownian
motion. Barriers B physically isolate the urns. Measurements yn � è� xn of particle
velocities are made, one to an urn. Each yn gives rise to an information amount In.
The total information I over all the data y is the sum of the individual informations
I n, n � 1, . . . , N from the urns.
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I �
X
mn
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��
dymdyn

@ pm

@è
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�
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�
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1
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This simpli®es, drastically, as follows. The ®rst sum separates into a product

of a sum X
n

�
dyn

@ pn

@è
(1:58)

with a corresponding one in index m. But�
dyn

@ pn

@è
� @

@è

�
dyn pn � @

@è
1 � 0 (1:59)

by normalization. Hence the ®rst sum in Eq. (1.57) is zero.

The second sum in Eq. (1.57) is, by Eq. (1.5),X
n

�
dyn pn

@

@è
ln pn

� �2

�
X

n

I n (1:60)

by the de®nition Eq. (1.9) of I. Hence, we have shown that

I �
XN

n�1

I n (1:61)

in this scenario of independent data. This is what we set out to prove.

It is well-known that the Shannon entropy H obeys additivity, as well, under

these conditions. That is, with

H � ÿ
�

dy p(yjè) ln p(yjè), (1:62)

under the independence condition Eq. (1.53) it gives

H �
XN

n�1

H n, H n � ÿ
�

dyn pn(ynjè) ln pn(ynjè): (1:63)

1.8.12 Exercise

Show this. Hint: The proof is much simpler than the preceding. One merely

uses the argument below Eq. (1.56) to collapse the multidimensional integrals

into the one in yn as needed.

One notes from all this that a requirement of additivity does not in itself

uniquely identify the appropriate measure of disorder. It could be entropy or, as

shown above, Fisher information. This is despite the identity ln ( fg) �
ln ( f )� ln (g), which seems to uniquely imply entropy as the measure.

Undoubtedly many other measures satisfy additivity as well.
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1.8.13 I � Min. from statistical mechanics viewpoint

According to a basic premise of statistical mechanics (Reif, 1965), the PDF for

a system that will occur is the one that is maximum probable to occur.

A general image-forming system is shown in Fig. 1.4. It consists of a source

S of particles ± any type will do, whether electrons, photons, etc. ± a focussing

device L of some sort and an image plane M for receiving the particles. Plane

M is subdivided into coordinate positions (xn, n � 1, . . . , N ) with a constant,

small spacing å. An `image event' xn is the receipt of a particle within the

interval (xn, xn � å). The number mn of image events xn is noted, for each

n � 1, . . . , N . There are M particles in all, with M very large. What is the joint

probability P(m1, . . . , mn)?

Each image event is a possible position xn, of which there are N. Therefore

the image events comprise an Nary events sequence. This obeys a multinomial

probability law (Frieden, 1991) of order N,

P(m1, . . . , mn) � M !
YN
n�1

r(xn)m n

mn!
: (1:64)

The quantities r(xn) are the `prior probabilities' of events xn. These are

considered next.

The ideal source S for the experiment is a very small aperture that is located

on-axis. This situation would give rise to ideal (prior) probabilities r(xn),

n � 1, . . . , N . However, in performing the experiment, we really cannot know

exactly where the source is. For example, for quantum particles, there is an

ultimate uncertainty in position of at least the Compton length (Sec. 4.1.17).

Hence, in general, the source S will be located at a small position Äx off-axis.

The result is that the particles will, in reality, obey a different set of probabili-

ties P(xn) 6� r(xn). These can be evaluated. Assuming shift invariance (Eq.

(1.11)) and 1:1 magni®cation in the system,

p(xn) � r(xn ÿ Äx), or, r(xn) � p(xn � Äx): (1:65)

By the law of large numbers (Frieden, 1991), since M is large the

probabilities p(xn) agree with the occurrences mn, by the simple rule

mn � Mp(xn): (1:66)

(This takes the conventional, von Mises viewpoint that probabilities measure

the frequency of occurrence of actual ± not ideal ± events (Von Mises, 1936)).

Using Eqs. (1.65) and (1.66) in Eq. (1.64) and taking the logarithm gives

ln P � C �
X

n

Mp(xn) ln p(xn � Äx)ÿ
X

n

ln [Mp(xn)!] (1:67)
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where C is an irrelevant constant. Since M is large we may use the Stirling

approximation ln u! � u ln u, so that

ln P � B� M
X

n

p(xn) ln
p(xn � Äx)

p(xn)
, (1:68)

where B is an irrelevant constant. The normalization of p(xn) was also used.

Multiplying and dividing Eq. (1.68) by the ®ne spacing å allows us to replace

the sum by an integral. Also, since P is to be a maximum, so will be ln P. The

result is that Eq. (1.68) becomes

ln P �
�

dxp(x) ln
p(x� Äx)

p(x)
� Max: (1:69)

after ignoring all multiplicative and additive constants. Noticing the minus sign

in Eq. (1.22b), we see that Eq. (1.69) states that

I[ p(x)] � I � Min:, (1:70)

agreeing with Eq. (1.47).

This approach can be generalized. Regardless of the physical nature of

coordinate x, there will always be uncertainty Äx in the actual value of the

origin of a PDF p(x). As we saw, this uncertainty is naturally expressed as

a `distance measure' I between p(x) and its displaced version p(x� Äx)

(Eq. (1.69)).

Fig. 1.4. A statistical mechanics view of Fisher information. The ideal point source
position S9 gives rise to the ideal PDF p(xn � Äx), while the actual point source
position S gives rise to the empirical PDF p(xn). Maximizing the logarithm of the
probability of the latter PDF curve implies a condition of minimum Fisher informa-
tion, I[ p(xn)] � I � Min.
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It is interesting to compare this approach with the derivation of the I-

theorem in Sec. 1.8.3. That was based purely on the assumption that the

Fokker±Planck equation is obeyed. By comparison, here the assumptions are

that (i) maximum probable PDFs actually occur (basic premise of statistical

mechanics) and (ii) the system admits of an ultimate resolution `length' Äx of

®nite extent.

The two derivations may be further compared on the basis of effective

`resolution lengths'. In Sec. 1.8.3 the limit Äx! 0 is rigorously taken, since

Äx is, there, just a mathematical artifact (which enables I to be expressed as

the cross-entropy via Eq. (1.22b)). Also, the approach by Plastino et al. to the

I-theorem that is mentioned in that section does not even use the concept of

Äx. By contrast, in the current derivation Äx is not merely of mathematical

origin. It originates physically, as an ultimate resolution length and, hence, is

small but intrinsically ®nite. This means that the transition from the cross-

entropy on the right-hand side of Eq. (1.69) to information I via Eq. (1.22b) is,

here, only an approximation.

If one takes this derivation seriously, then an important effect follows. Since

I is only an approximation on the scale of Äx, the use of I[q(x)] in any

variational principle (such as EPI) must give solutions q(x) that lose their

validity at scales ®ner than Äx. For example, Äx results as the Compton length

in the EPI derivation of quantum mechanics (Chap. 4). A rami®cation is that

quantum mechanics is not represented by its famous wave equations at such

scales.

This is a somewhat moot point, since then observations at that scale could

not be made anyhow. Nevertheless, it suggests that a different kind of mech-

anics ought to hold at scales ®ner than Äx. Such considerations of course lead

one to thoughts of quantum gravity (Misner et al., 1973, p. 1193); see also

Chap. 11. This is a satisfying transition from a physical point of view. Also,

from the statistical viewpoint, it says that EPI is a complete theory, de®ning the

limits of its range of validity.

Likewise, the electromagnetic wave equation (Chap. 5) would break down at

scales Äx ®ner than the vacuum ¯uctuation length given by Eq. (5.4);

suggesting a transition to a quantum electrodynamics. And the classical

gravitational ®eld equation (Chap. 6) would break down at scales ®ner than the

Planck length, Eq. (6.22); again suggesting a transition to quantum gravity (see

preceding paragraph). The magnitudes of these ultimate resolution lengths are,

in fact, predicted by the EPI approach; see Chaps. 5, 6 and Sec. 3.4.15.

However, this kind of reasoning can be repeated to endlessly ®ner and ®ner

scales. Thus, the theory of quantum gravity that is derived by EPI in Chap. 11

must break down beyond a ®nest scale Äx de®ned by the (presumed)
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approximate nature of I at that scale. The length Äx would be much smaller

than the Planck length. This, in turn, suggests the need for a new `mechanics'

that would hold at ®ner scales than the Planck length, etc., to ever-®ner scales.

The same reasoning applies to electromagnetic and gravitational theories.

Perhaps all three theories would converge to a common theory at a ®nest

resolution length to be determined, at which `point' the endless subdivision

process would terminate.

On the other hand, if one does not take this derivation seriously then, based

upon the derivation of Sec. (1.8.2), the wave equations of quantum mechanics

are valid down to all scales, and a transition to quantum gravity is apparently

not needed. Which of the two views to take is, at this time, unknown.

The statistical mechanics approach of this section is based partly on work by

Shirai (1998).

1.8.14 Multiple PDF cases

In all of the preceding, there was one, scalar parameter è to be estimated. This

implies an information Eq. (1.2) that may be used to predict a single-

component PDF p(x) on scalar ¯uctuations x, as sketched in Sec. 1.8.8. Many

phenomena are indeed describable by such a PDF. For example, in statistical

mechanics the Boltzmann law p(E) de®nes the single-component PDF on

scalar energy ¯uctuations E (cf. Chap. 7).

Of course, however, nature is not that simple. There are physical phenomena

that require multiple PDFs pn(x), n � 1, . . . , N or amplitude functions

qn(x), n � 1, . . . , N for their description. Also, the ¯uctuations x might be

vector quantities (as indicated by the boldface). For example, in relativistic

quantum mechanics there are four wave functions and, correspondingly, four

PDFs to be determined (actually, we will ®nd eight real wave functions

qn(x), n � 1, . . . , 8, corresponding to the real and imaginary parts of the four

complex wave functions). To derive a multiple-component, vector phenomen-

on, it turns out, requires use of the Fisher information de®ning the estimation

quality of multiple vector parameters. This is the subject of the next chapter.
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