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1

Introduction

Etching and bonding of silicon are basic technologies in micro systems technology (MST).
MST is currently developing very fast, partially due to the large financial backing which is
put into its development by governments and companies.

The promises of MST are formidable. The main promise stems from the fact that MST
is based on batch fabrication derived from integrated circuit technology. It is anticipated
that MST will undergo an evolution similar to integrated circuit (IC) technology, with new
inexpensive products that will in part revolutionize our lives. The ideas on the potential of
MST range from devices which are nowadays found in nearly all automobiles (pressure
sensors and accelerometers) to sensors for flow, temperature, force, position, magnetic
fields, chemicals, light, IR-radiation, etc.; either inexpensive or with unmet performance. In
our view, the next generation of devices will use micropumps, flow sensors, micromixers,
microsieves, microreactors, etc. for dosing in medicine, biology, chemical, and biochemical
analysis systems with applications in environmental monitoring, medicine, process control,
and chemical analysis in general.

Looking further into the future, we will have microrobots in a vast number of applications.
They will be found in charge coupled device (CCD) cameras for active optimizing of the
position of the CCD chip, and transporting and positioning the optic components in CD
setups. There will be robots that help physicians in microsurgery, robots that repair and
maintain other microsystems, and microrobots that perform fabrication and inspection tasks
in microclean rooms. Most of the latter are a few decades away, and — very likely — main
future applications of MST are lacking in the list, being as unpredictable as the application
of computers for games was twenty years ago.

At present we have to solve a great deal of problems. These problems are associated
with the control of the technology; we have to learn how to design microsystems, and
we have to develop tools for design, modelling, and simulation of microsystems. We are
encountering new aspects of physics and chemistry when scaling down known systems.
We have to translate three-dimensional principles, design, and fabrication to planar, say
2.5-dimensional, principles, design, and fabrication.

The microworld is different from the macroworld. The microworld is governed by surface
forces such as surface tension and friction. Inertia and weight have meaning in microsystems
only in exceptional cases, such as the accelerometer or the resonant sensor, and electrostatic
forces and fluid shear forces are large and heavily deform mechanical constructions. Stream-
ing is at extremely small Reynolds numbers, so all fluids appear quite viscous. Surfaces
appear very rough, and mechanical constructions are very stiff and strong. In systems of um
size the temperature of the surroundings would manifest itself by violent Brownian motion.
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To give an illustrative example, ants are unable to wash their face: they are not strong
enough to break through the surface tension of a water droplet. Once inside a water droplet
they would drown because they couldn’t leave it. They could never maintain a fire, because
the flame is too large. They could never read a book: the surface tension of the micropages
would forbid ants to open the book. If we were to shrink by using a fantastic machine, as in
the movie “The Fantastic Voyage,” we would certainly be unable to survive a fight against
an ant, just because we are wrongly designed for this scale.

The physics of the microworld and the resulting possibilities for microsystems were
anticipated by R. P. Feynman in 1959. The article (“There is plenty room at the bottom”) has
been reprinted in the Journal of Microelectromechanical Systems [1]. Feynman anticipated
the important role of photolithography, thin film techniques, high density recording, and
electrostatic motors. Twenty years later, Feynman gave a second lecture on the subject, a
written version of which can be found in [2].

When designing microsystems, we have to learn how this microworld feels. The designer
has to be trained for a new intuition. If one looks at scaling from a phenomenological point
of view, one finds some interesting trends. In Fig. 1.1 we show how the price per mass for
machines and mechanical components depends on the scale. It is quite evident that small
things are relatively more expensive than large things.

Figure 1.2 demonstrates a striking scale effect. The Reynolds number, as defined in the
figure, lies on a single line for animals over the whole range between the smallest animals
(bacteria) and the largest animals (whales).

The technology for microsystems is rooted in two quite different traditions. One derives
from fine mechanics, and the other is based on photolithographic techniques. The latter
allows fabrication of structures with finest details in the order of 1 xm and a relative precision
of not more than say 1/10,000. The limit of fine mechanics is close to 10 pm; however, the
relative precision is one or two orders larger. The most important difference between these
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techniques is that the latter technology is suitable for batch processes but is restricted to
projections of a two-dimensional structure in three dimensions.

This book concentrates on the latter. In Fig. 1.3 we show the basic photolithographic
process. We see how “three-dimensional” structures are realized by using a two-dimensional
structure. This “three-dimensional” structure is not truly three dimensional: we will always
see that the structures derive from a pattern in a plane. In some way or other (Fig. 1.3) we
only get projections. We cannot make screws and nuts, but they would not be of much help:
we have no systems to assemble microsystems.

Here is one of the challenges for the microengineer: to design microsystems that need not
be assembled part by part, but that come out of the production process assembled. We cannot
make microcomponents and thereafter assemble them: we have to design microsystems.
Microtechnology does not only restrict the design possibilities, but also offers new design
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Fig. 1.4. Possibilities for etching. (a) and (c) anisotropic etching, (b) isotropic etching.

principles. We can fabricate microbridges with a thickness of 1um and a length of 1 cm. In
a macroworld this would correspond to a bridge of 1 km length and 10 cm thick!

In Fig. 1.4 the various possibilities for etching are indicated. All shapes shown can
be realized by both dry and wet etching. However, wet chemical anisotropic etching is
restricted to crystallographic orientations, while dry etching is not. Dry etching is therefore
more flexible than wet etching, but the process is more difficult to control and the equipment
is much more expensive.

Engineers who do their work in MST are faced with the fact that MST is a multidisci-
plinary field. In the optimal situation, the engineer must be trained in basic physics and
chemistry in order to be able to understand design and modelling of the microdevices and
systems. He needs to know quite a lot about mechanical engineering, in particular, strength
of materials, theory of elasticity, and tribology. He needs the typical skills of an electrical
engineer with respect to systems thinking, and he must be able to use the various simulation
tools, such as finite elements and SPICE. He must be aquainted with the fundamentals of
optics and magnetics. He will find that each application will have its own difficulties. For
example, an application in the medical field demands that the engineer be able to commu-
nicate with the physician; an application in space travel again demands a totally different
knowledge and background.

All this cannot be combined in a single person. Research in MST is only possible in
teams in which physicists, chemists, and electrical and mechanical engineers co-operate.
We believe however that the high degree of interdisciplinary demands in the long term
that engineers are trained not in a single discipline, but start from one discipline to gain
knowledge and skills from other disciplines as well. Therefore, it is necessary to design
new curriculum in MST.
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