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1

Introduction

1.1  Brief history

Cellular automata (often termed CA) are an idealization of a physical
system in which space and time are discrete, and the physical quantities
take only a finite set of values.

Although cellular automata have been reinvented several times (of-
ten under different names), the concept of a cellular automaton dates
back from the late 1940s. During the following fifty years of exis-
tence, cellular automata have been developed and used in many different
fields. A vast body of literature is related to these topics. Many con-
ference proceedings [1-8]), special journal issues [9,10] and articles are
available.

In this section, our purpose is not to present a detailed history of the
developments of the cellular automati approach but, rather, to emphasize
some of the important steps.

1.1.1 Self-reproducing systems

The reasons that have led to the elaboration of cellular automata are
very ambitious and still very present. The pioneer is certainly John von
Neumann who, at the end of the 1940s, was involved in the design of
the first digital computers. Although von Neumann’s name is definitely
associated with the architecture of today’s sequential computers, his con-
cept of cellular automata constitutes also the first applicable model of
massively parallel computation.

Von Neumann was thinking of imitating the behavior of a human brain
in order to build a machine able to solve very complex problems. However,
his motivation was more ambitious than just a performance increase of
the computers of that time. He thought that a machine with such a

1



2 1 Introduction

complexity as the brain should also contain self-control and self-repair
mechanisms. His idea was to get rid of the difference which exists between
processors and the data, by considering them on the same footing. This
led him to envisage a machine capable of building itself, out of some
available material.

Rapidly, he considered the problem from a more formal viewpoint and
tried to define the properties a system should have to be self-replicating. He
was mostly interested to find a logical abstraction of the self-reproduction
mechanism, without reference to the biological processes involved.

Following the suggestions of S. Ulam [11], von Neumann addressed this
question in the framework of a fully discrete universe made up of celis.
Each cell is characterized by an internal state, which typically consists of
a finite number of information bits. Von Neumann suggested that this
system of cells evolves, in discrete time steps, like simple automata which
only know of a simple recipe to compute their new internal state. The rule
determining the evolution of this system is the same for all cells and is a
function of the states of the neighbor cells. Similarly to what happens in
any biological system, the activity of the cells takes place simultaneously.
However, the same clock drives the evolution of each cell and the updating
of the internal state of each cell occurs synchronously. These fully discrete
dynamical systems (cellular space) invented by von Neumann are now
referred to as cellular automata.

The first self-replicating cellular automaton proposed by von Neumann
was composed of a two-dimensional square lattice and the self-reproducing
structure was made up of several thousand elementary cells. Each of these
cells had up to 29 possible states [12]. The evolution rule required the
state of each cell plus its four nearest neighbors, located north, south, west
and east. Due to its complexity, the von Neumann rule has only been
partially implemented on a computer [13].

However, von Neumann had succeeded in finding a discrete structure of
cells bearing in themselves the recipe to generate new identical individuals.
Although this result is hardly even a very primitive form of life, it is
quite interesting because it is usually expected that a machine can only
build an object of lesser complexity than itself. With self-replicating
cellular automata, one obtains a “machine” able to create new machines
of identical complexity and capabilities.

The von Neumann rule has the so-called property of universal com-
putation. This means that there exists an initial configuration of the
cellular automaton which leads to the solution of any computer al-
gorithm. This sounds a surprising statement: how will such a discrete
dynamics help us to solve any problem? It turns out that this property
Is of theoretical rather than practical interest. Indeed, the property of
universal computing means that any computer circuit (logical gates) can
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be simulated by the rule of the automaton. All this shows that quite
complex and unexpected behavior can emerge from a cellular automaton
rule.

After the work of von Neumann, others have followed the same
line of research and the problem is still of interest [14]. In particular,
E.F. Codd [15] in 1968 and much later C.G. Langton [16] and Byl [17]
proposed much simpler cellular automata rules capable of self-replicating
and using only eight states. This simplification was made possible by giv-
ing up the property of computational universality, while still conserving
the idea of having a spatially distributed sequence of instructions (a kind
of cellular DNA) which is executed to create a new structure and then
entirely copied in this new structure.

More generally, artificial life is currently a domain which is intensively
studied. Its purpose is to better understand real life and the behavior of
living species through computer models. Cellular automata have been an
early attempt in this direction and can certainly be further exploited to
progress in this field [18,19].

1.1.2  Simple dynamical systems

In a related framework, it is interesting to remember that it is precisely a
simple ecological model that has brought the concept of cellular automata
to the attention of wide audience. In 1970, the mathematician John
Conway proposed his now famous game of life [20]. His motivation was
to find a simple rule leading to complex behaviors. He imagined a two-
dimensional square lattice, like a checkerboard, in which each cell can be
either alive (state one) or dead (state zero). The updating rule of the game
of life is as follows: a dead cell surrounded by exactly three living cells
comes back to life. On the other hand, a living cell surrounded by less than
two or more than three neighbors dies of isolation or overcrowdness. Here,
the surrounding cells correspond to the neighborhood composed of the
four nearest cells (north, south, east and west) plus the four second nearest
neighbors, along the diagonals. Figure 1.1 shows three configurations of
the game of life automaton, separated by 10 iterations.

It turned out that the game of life automaton has an unexpectedly
rich behavior. Complex structures emerge out of a primitive “soup” and
evolve so as to develop some skills. For instance, objects called gliders
may form (see problems, section 1.4). Gliders correspond to a particular
arrangement of adjacent cells that has the property to move across space,
along straight trajectories. Many more such structures have been identified
in the vast body of literature devoted to the game of life [21,22]. As for
the von Neumann rule, the game of life is a cellular automata capable of
computational universality.
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Fig. 1.1. The game of life automaton. Black dots represents living cells whereas
dead cells are white. The figure shows the evolution of some random initial
configurations.

In addition to these theoretical aspects, cellular automata were used in
the 1950s for image processing [23]. It was recognized early on that much
tedious picture analysis could be carried out automatically, according to a
cellular automata computing model: the pixels of an image can be treated
simultaneously, using simple local operations. Special-purpose machines
based on cellular automata logic have been developed for noise reduction,
counting and size estimation in images obtained from observations with
a microscope.

At the beginning of the 1980s, S. Wolfram studied in detail a family of
simple one-dimensional cellular automata rules (the now famous Wolfram
rules [24,25]). He had noticed that a cellular automaton is a discrete dy-
namical system and, as such, exhibits many of the behaviors encountered
in a continuous system, yet in a much simpler framework. A concept such
as complexity could be investigated on mathematical models allowing an
exact numerical computer calculation, because of their Boolean nature (no
numerical errors nor truncation as in more traditional models). Wolfram’s
results have contributed to prove that cellular automata are important
objects to consider for statistical mechanics studies and, at the present
time, Wolfram’s rule are still the topic of much research.

1.1.3 A synthetic universe

The property of many cellular automata rules being a universal computer
made several authors think that the physical world itself could be a
very large cellular automaton. Tommaso Toffoli [26] compares cellular
automata to a synthetic model of the universe in which the physical laws
are expressed in terms of simple local rules on a discrete space—time
structure.



1.1 Brief history 5

T. Toffoli, N. H. Margolus and E. Fredkin recognized the importance
of cellular automata as a modeling environment for physical systems.
They were very interested in the analogy that exists between the theory of
information as it is used to describe numerical processing in a computer
and the laws of physics. Cellular automata provide an excellent framework
to develop these ideas. In particular, they showed how to build a fully time-
reversible logic from which any numerical operation can be implemented
without any loss of information. The so-called billiard ball [26] is a
cellular automata rule which is an example of such a reversible model of
computation.

The possibility of displaying, on a computer screen, the time evolution
of large cellular automata systems, at the rate of several updates per
second of the complete lattice offers a way of performing experiments live
on an artificial universe, whose evolution rules are set up by the observer.
By building their first general purpose cellular automata machines CAM-6
in the mid-1980s, Toffoli and Margolus provided a very powerful cellular
automata environment with the capability of a supercomputer of that time,
at a very affordable price and with unique display facilities. This machine
has stimulated many developments of cellular automata techniques and
has contributed to the spreading of the main ideas to a wide audience of
scientists.

Toffoli and Margolus’s book [26]: Cellular Automata Machines: a New
Environment for Modeling, is a wonderful source of inspiration in the field
of cellular automata and provide a complete description of the CAM-6
hardware. More recently, Toffoli, Margolus and coworkers have designed
CAM-8, a much more powerful hardware environment: a parallel, uni-
form, scalable architecture for cellular automata experimentation [27].
This hardware platform offers high performance, a flexible approach, dis-
play facilities and is naturally appropriate to work on three-dimensional
systems. It has been successfully used for many different applications.

1.1.4 Modeling physical systems

It was also in the 1980s that an important step in the theory of cellular
automata was accomplished. It was recognized that the so-called HPP [2§]
lattice gas models developed in the 1970s by Hardy, Pomeau and de Pazzis
was in fact a cellular automata. This model consists of a simple and fully
discrete dynamics of particles moving and colliding on a two-dimensional
square lattice, in a such a way as to conserve momentum and particle
number.

The HPP dynamics was initially planned as a theoretical model to
study fundamental statistical properties of a gas of interacting particles.
The actual implementation of this model as a cellular automata rule and
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the visualization of the fast moving particle shed a different light on the
possibilities of such models: isn’t it possible to simulate the behavior of a
real system of particles (like a fluid or a gas) as a cellular automata rule?
After all, it is well known that the flows of a fluid, a gas or even a granular
medium are very similar at a macroscopic scale, in spite of their different
microscopic nature. A fully discrete and simplified molecular dynamics
could work too, provided the system is considered at an appropriate
observation scale.

Of course, the idea of using discrete systems as a model of real phenom-
ena has already been considered for several problems. The Ising model
of classical spin is a famous example which will be discussed in more
detail in the next chapter. From the fluid side, already at the end of the
nineteenth century, Maxwell [29], had proposed a discrete velocity system
of Interacting particles as a model of a gas. In fact, such lattice gas,
discrete velocity models have been developed independently from cellular
automata theory [30,31].

However, cellular automata provide a new conceptual framework, as
well as an effective numerical tool, which retains important aspects of the
microscopic laws of physics, such as simultaneity of the motion, locality
of the interactions and time reversibility.

Cellular automata rules are viewed as an alternative form of the
microscopic reality which bears the expected macroscopic behavior. From
a numerical point of view it was expected, at the end of the 1980s, that
a wind tunnel could be replaced by a fully discrete computer model.
The first cellular automata model to give credit to this possibility is the
famous FHP model proposed in 1986 by U. Frisch, B. Hasslacher and
Y. Pomeau [32], and almost simultaneously by S. Wolfram [33]. These
authors showed that their model, despite its fully discrete dynamics, fol-
lows, in some appropriate limits, the behavior prescribed by the Navier—
Stokes equation of hydrodynamics.

Note that models like FHP or HPP are often termed lattice gas auto-
mata (LGA) to distinguish them from the less specific cellular automata
terminology. Clearly, from a mathematical point of view, a lattice gas
automata is a cellular automata, but the way one thinks, for instance,
of the game of life is quite different from the underlying philosophy
of the FHP model. This difference will become clear to the reader
as he or she becomes more familiar with the next chapter of this book.
Nevertheless, in this book, we will often use cellular automata to designate
a LGA.

Since the FHP rule was discovered, lattice gas automata or cellular
automata fluids as these kind of particle models are now often referred to,
have been developed intensively and several insufficiencies of the initial
mode] corrected. The Ecole Normale Supérieure in Paris has been very
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active and P. Lallemand and D. d’Humieres, in particular, have played a
pioneering role in this field [34-37].

However, contrary to first expectations, lattice gas models of fluids
have not been able to surpass the traditional numerical methods of
hydrodynamics and compute high Reynolds flows. Their relatively high
viscosity, which is only determined by the cellular automata rule (and
therefore not adjustable), is a limiting factor to the practical study of
many of these flows. The finite spatial resolution of the cellular automata
lattice (physical phenomena must occur at a much larger scale than the
lattice spacing) is another limitation on the study and modeling of fully
developed turbulence, unless the system has such a large scale that the ad-
vantage of a cellular automata approach vanishes even on today’s fastest
computers [38].

However, lattice gas automata have been much more successful in
modeling complex situations for which traditional computing techniques
are not applicable. Flows in porous media [39-41], immiscible [42—
46] flows and instabilities, spreading of a liquid droplet and wetting
phenomena [47], microemulsion [48] erosion and transport problems [49]
are some examples pertaining to fluid dynamics.

Other physical situations, like pattern formation, reaction-diffusion pro-
cesses [50], nucleation—aggregation growth phenomena, are very well de-
scribed by cellular automata dynamics and will be investigated in detail
in this book.

1.1.5 Beyond the cellular automata dynamics: lattice Boltzmann methods
and multiparticle models

Very often, the advantage of the cellular automata (or lattice gas) approach
is most apparent when complex boundary conditions are present. Due
to the microscopic interpretation of the dynamics, these conditions can
be taken into account in a much more natural way than in a continuous
description (like a differential equation) in which our basic intuition of
the phenomena may be lost.

On the other hand, cellular automata models have several weakness
related to their fully discrete nature: statistical noise requiring systematic
averaging processes, and little flexibility to adjust parameters of a rule
in order to describe a wider range of physical situations. At the end
of the 1980s, McNamara and Zanetti [51], and Higueras, Jimenez and
Succi [52] showed the advantage of extending the Boolean dynamics of the
automaton to directly work on real numbers representing the probability
for a cell to have a given state.

This approach, called the lattice Boltzmann method (LBM), is numer-
ically much more efficient than the Boolean dynamics and provides a
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new computational model much more suited to the simulation of high
Reynolds flows and many other relevant applications (for instance glacier
flow [53]).

Lattice Boltzmann models retain the microscopic level of interpreta-
tion of the cellular automata approach but neglect many-body correlation
functions. However, this method now constitutes a very promising ap-
proach to modeling physical systems and is discussed on several occasions
throughout this book.

In between the strict cellular automata approach and the more flexible
lattice Boltzmann method, there is room for an intermediate description:
the multiparticle models which are still under development at the present
time. These models preserve the concept of a quantized state but an
infinite set of values is accepted. Consequently, numerical stability is
guaranteed (as opposed to the LBM), and many-body correlations taken
into account. The large number of possible states offers more flexibility
when modeling a physical system and yields less statistical noise. But a
multiparticle dynamics is more difficult to devise and numerically slower
than its lattice Boltzmann counterpart. Examples of this approach will be
presented in this book.

From our point of view, the cellular automata approach is not a
rigid framework. It is rather a philosophy of modeling which should
be considered with some pragmatism. The important issue in cellular
automata modeling is to capture the essential features of given phenomena
and translate them to a suitable form to obtain an effective numerical
model. To this end, it is acceptable (and even beneficial) to relax some
of the constraints of the original definition of a cellular automata. The
introduction of the lattice Boltzmann method is an illustration of this fact.
The point is to conserve the spirit of the approach and its relevant features
rather than its limitations. This remark is particularly in order because
present parallel computers offer an ideal and quite flexible platform to
implement cellular automata models without the restrictions imposed by
dedicated hardware.

1.2 A simple cellular automaton: the parity rule

In this section, we discuss a simple cellular automata rule, in order to
introduce and illustrate the concept. This should slowly familiarize the
reader with a more precise notion of cellular automata. Section 1.3 will
present a more formal definition.

Although it is very basic, the rule we study here exhibits a surpris-
ingly rich behavior. It was proposed initially by Edward Fredkin in the
1970s [54] and is defined on a two-dimensional square lattice.
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{al

Fig. 1.2. The @ rule on a 256 x 256 periodic lattice: (a) initial configuration; (b)
and (c) configurations after t, = 93 and ¢, = 110 iterations, respectively.

Each site of the lattice is a cell which is labeled by its position 7 = (i, j)
where i and j are the row and column indices. A function y,(F) is
associated to the lattice to describe the state of each cell at iteration t.
This quantity can be either O or 1.

The cellular automata rule specifies how the states y,.; are to be
computed from the states at iteration t. We start from an initial condition
at time ¢ = 0 with a given configuration of the values yo(¥) on the lattice.
The state at time ¢t = 1 will be obtained as follows

(1) Each site 7 computes the sum of the values yo(F /) on the four
nearest neighbor sites 7 ' at north, west, south and east. The system
is supposed to be periodic in both i and j directions (as on a torus)
so that this calculation is well defined for all sites.

(2) If this sum is even, the new state y;(¥) is O (white), else, it is 1 (black).

The same rule (step 1 and 2) is repeated to find the states at time
t=2,3.4,...

From a mathematical point of view, this cellular automata parity rule
can be expressed by the following relation

1) =wi+Lj)eypli—Lj)eplj+oypij—1) (1.1)

where the symbol @ stands for the exclusive OR logical operation. It is
also the sum modulo 2: 1@ 1=090=0and l®0=001=1.

When this rule is iterated, very nice geometrical patterns are observed,
as shown in figure 1.2. This property of generating complex patterns
starting from a simple rule is actually generic of many cellular automata
rules. Here, complexity results from some spatial organization which
builds up as the rule is iterated. The various contributions of successive
iterations combine together in a specific way. The spatial patterns that
are observed reflect how the terms are combined algebraically.
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Cellular Cﬁi&ﬁ%ﬁér
Automata A%ﬁ%@a a
(a) (b) (©)

Fig. 1.3. The & rule replicates any initial pattern when the number of iterations
is a power of two. Image (a) shows the initial pattern at time t, = 0. Images (b)
and (c) show successive iterations at times t, = 16 and ¢, = t, + 32.

On closer inspection, we also observe that the initial pattern is replicated
at some specific iteration. Figure 1.3 illustrates that point with a more
enlightening initial condition. The times at which this happens are a power
of two. Another surprising fact occurs when the system size L is a power
of two: after L/2 iteration the state of each cell vanishes for all possible
initial configurations.

These behaviors, as well as the way the pattern builds up can be
explained by working out the definition of the rule. Applying the rule 1.1
twice yields ;.1 as a function of y;_;

Ye+1(i j) = wli+2, /)@, ) @i+ Lj+ 1)
Op—1(i+ 1,j— 1) ® w11, J) ® wr1(i — 2, )
oyi—Lj+hepa(i—Lji—Deypli+1,j+1)
QY — Lj+ 1) @ p1(i,j+2) @ w1, )
op—i+Lj—Deypa(i—1j—-1) &y 1))
®y-1(i,j —2) (1.2)

Since a® a =0 and a ® 0 = q, for all values of a, one obtains

Y2, ) =i+ 2, )@y (i—2/)@pdi,j +2) @ p,(i,j—2) (1.3)

Thus, after two iterations, the action of the rule is to translate the initial
configuration by two lattice sites in the four directions and XOR them.

If now we compute similarly y,13(i, j) as a function of (i, j), we no
longer get such a simple expression. A relation similar to equation 1.2
is obtained, but without any cancellation. We see that y,3(i,j) is a
superposition of 16 translations. As a result, we obtain the rich geometrical
structure observed in figure 1.2.

However, it is easy to prove that the behavior of the @ rule is simple
when the number of iterations performed is a power of two. To show this
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property, suppose the following relation is true for a given value of T.
lpt(l’ ]) = U)z—T(l‘f‘T’J)@%—T(l—T,J)EBIPz—T(l,J‘*‘T)@U’z—T(l’]_T) (14)

We already know it is true for T =1 and T = 2. Then, if we apply this
same relation to w,_r on the right-hand side, we obtain

Y(i, /) = Yr2r(i+ 2T, j) © a1, j) ® Year(i+ T,j+ T)

@prari+ T,j—T)® w21, ) ® Yr—2r(i — 2T, j)
QY ar(i—T,j+ T)®prar(i—T,j—T)
QYar(i+ T, j+T)@par(i—T,j+ T)®pr2r(i,j+2T)
Qa1 J) @ Yrar(i+ T, j—T)®ywrar(i—T,j—T)
®yr—2r(i, J) ® wra1(i, j — 2T)

= Y27+ 2T, j) ® weor(i — 2T, j) ® w21 (i, j + 2T)
@yi—ar(i,j—2T) (1.5)

This result shows that property 1.4 is then also true for 2T. Therefore,
it is true for any lag T which is a power of two. At these particular
values of time, the @ rule is equivalent to the superposition (in the sense
of the addition modulo two) of the initial pattern translated in the four
lattice directions by an amount T. When the spatial extension of the
initial pattern is small enough, we see it replicated four times. Otherwise
destructive interferences show up, which give rise to partial replication.

For a square lattice of size L = 2¥, relation 1.4 implies that, after L/2
iterations, the result of the @ rule is to superpose the initial condition
with itself and, therefore, to yield a zero configuration.

For a number of iterations that is not a power of two, some results
can also be obtained. In general, the configuration after T steps is the
superposition modulo 2 of 4% different translations of the initial pattern,
where k is the number of digits equal to 1 in the binary representation of
T.

This property can be proved as follows. First, we notice that the
rule is additive, that is any initial pattern can be decomposed into the
superposition of one-pixel images. Each of these simple configurations
can be evolved independently and the results superposed to obtained the
final complete pattern.

We will prove our statement for an initial configuration such that
o(0,0) = 1, only. It is convenient to decompose T as a sum of powers of
two. There exists a value of n such that we can write T as

n—1
T=2+> a2 =2"+T (1.6)
¢=0

where, by construction, T' < 2" — 1 (equality holds when all the a, = 1).
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Now, performing T iterations of the rule is equivalent to first do T’ steps
and then the last 2" iterations. Clearly, by the definition of the rule, w1 (i, j)
will contain the terms wo(i — T7, j), wo(i + T', j), wo(i, j— T') and wo(i, j +
T') and other terms involving only translations by a smaller amount.
Therefore, the configuration at time T’ has a given spatial extension.

When performing the next 2" iterations, we know from 1.4 that they will
result in the superposition of four translations by 2" of the configuration
at time T’. None of these translations will give rise to cancellation
because the spatial extension of the configuration at time T’ is smaller
than the translation length. Indeed, after the left translation by 2", the
right boundary will move to position T’ — 2" with respect to the original
pattern. Similarly, the left boundary will move to —T' + 2", due to the
right translation. There is no overlap between the patterns generated in
this way because, since T’ < 2", one has

T — 2" < —T 42" (1.7)

Therefore, for each non-zero a, in expression (1.6), four translations
are produced and the final result is composed of 4 non-over lapping
translations, with k = Y a,. When the initial image is not a single pixel,
destructive interference is observed.

As a result, we get the rich geometrical structure observed in figure 1.2.
As the number of iterations increases more and more terms are generated.
Therefore, the algorithmic complexity of the expression becomes larger,
thus reflecting the complexity of the cellular automaton configuration.
More precisely, k is bounded by the logarithm of T. In order to evaluate
the asymptotic complexity of the expression, we write T ~ 2. The number
of translations generated is 4 = T? and the complexity goes as the square
of the number of iterations.

The above discussion has unraveled the mechanisms leading to the com-
plex structures produced by the @ rule as being due to the superposition
of the initial pattern translated many times by a different amount. From
this analysis, we can conclude that this rule is not a self-replicating cellular
automaton in the sense imagined by von Neumann.

Finally, it is interesting to note that the @ rule is a generalization in two
dimensions of the famous rule 90 of Wolfram which will be discusseded
in section 2.1.1.

1.3 Definitions

1.3.1 Cellular automata

In this section we shall present a more formal definition of a cellular
automaton. In general, a cellular automaton requires



