NUMERICAL METHODS IN
FINANCE

edited by

L.C.G. Rogers
University of Bath

and

D. Talay
INRIA, Sophia-Antipolis

"% CAMBRIDGE

&5 UNIVERSITY PRESS




PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK  http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA  http://www.cup.org

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1997

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1997
Reprinted 1999

Printed in the United Kingdom at the University Press, Cambridge
Typeset in Computer Modern
A catalogue record for this book is available from the British Library

ISBN 0521 57354 8 hardback



CONTENTS

Contributors . ... vii

Introduction ... ix

G. Barles  Convergence of Numerical Schemes for Degenerate Parabolic

Equations Arising in Finance Theory .......... .. ... ... ... ..o ... 1
Nigel J. Newton  Continuous-Time Monte Carlo Methods and Variance
Reduction .. ... . 22
M. Broadie & J. Detemple Recent Advances in Numerical Methods for
Pricing Derivative Securities ..........cooiiuiiii i, 43
F. AitSahlia & P. Carr  American Options: A Comparison of Numerical
Methods ... ... 67
Adriaan Joubert & L.C.G. Rogers Fast, Accurate and Inelegant Valuation
of American OPions ... ... o 88
Xiao Lan Zhang Valuation of American Option in a Jump-diffusion
Models . ... 93
E. Fournié, J.M. Lasry & P.L. Lions Some Nonlinear Methods for Studying
Far-from-the-money Contingent Claims ............................. 115
E. Fournié, J.M. Lasry & N. Touzi Monte Carlo Methods for Stochastic
Volatility Models ...... .. 146
Agnes Sulem  Dynamic Optimization for a Mized Portfolio with
Transaction COSLS . ..... ... et 165
N. El Karoui & M.C. Quenez Imperfect Markets and Backward Stochastic
Differential Equations ........... ... 181
N. El Karoui, E. Pardoux & M.C. Quenez Reflected Backward SDFEs and
American OPtions ...... ... 215
D. Chevance Numerical Methods for Backward Stochastic Differential
Equations ...... ..o 232

Agnes Tourin & Thaleia Zariphopoulou  Viscosity Solutions and Numerical
Schemes for Investment/Consumption Models with Transaction Costs 245

Renzo G. Avesani & Pierre Bertrand  Does Volatility Jump or Just Diffuse?
A Statistical Approach. ......... ... 270

Peter Bossaerts & Bas Werker  Martingale-Based Hedge Error Control 290

Claude Henin & Nathalie Pistre = The Use of Second-Order Stochastic
Dominance To Bound European Call Prices: Theory and Results ....305



Convergence of Numerical Schemes
for Degenerate Parabolic Equations
Arising in Finance Theory

G. Barles

1 Introduction

The aim of this article is twofold: on one hand, we describe a general conver-
gence result which applies to a wide range of numerical schemes (‘monotone
schemes’) for nonlinear possibly degenerate elliptic (or parabolic) equation;
this type of equation arises naturally in Finance Theory as we will show first.
This convergence result was obtained in an article written in collaboration
with P.E. Souganidis (1991).

On the other hand, we present several simple numerical schemes for com-
puting the price of different types of ‘simple’ options: American options,
lookback options and Asian options. These schemes are all based on ‘split-
ting methods’ and we want to emphasize the fact that this allows also easy
extensions for computing the price of more complex options with complicated
contracts {cap, floor, ... etc). These schemes also provide examples for which
the convergence result of the first part applies. This second part reports on
several works in collaboration with J. Burdeau, Ch. Daher & M. Romano (cf.
references) which were done in connection with the Research and Develop-
ment Department of the Caisse Autonome de Refinancement (CDC group).

The article is organized as follows: since the convergence result for nu-
merical schemes relies strongly on the notion of ‘viscosity solutions’, which
is a notion of weak solutions for nonlinear elliptic and parabolic equations,
we are first going to present this notion of solutions. In order to introduce
it, as a motivation, we examine in the first section several examples of equa-
tions arising in Finance Theory, and more particularly in options pricing, and
we describe the theoretical difficulties in studying them. The second section
presents the notion of viscosity solutions itself: we first introduce the notion
of continuous viscosity solutions and then we give the extension to the more
complicated framework of discontinuous viscosity solutions which is an un-
avoidable tool to obtain the general convergence result for numerical schemes
which is given in the third section. Then several comments on the assump-
tions are given and finally, in the fourth section, we present some numerical
schemes in option pricing models which are based on splitting methods.

1



2 Barles

2 Examples of Parabolic Equations Arising
in Finance Theory

In the classical framework of the theory of Black and Scholes, the stock price
(Ss)szt for time t > 0 is the solution, in the risk-neutral probability, of the
stochastic differential equation

dSs = Ss(rds +odW,), S;=S9, (2.1)

where (W,)s>; is a standard Brownian motion in R. The constants or func-
tions r and o are known as being respectively the short term interest rate and
the so-called volatility. In all the following examples, we will always assume
we are in this framework.

We refer to Black & Scholes (1973), Cox & Rubinstein (1985), Cox, Ross
& Rubinstein (1979), Duffie (1988) and Ingersoll (1987) for a complete pre-
sentation of options pricing theory and its financial background.

1. Classical European Options (Call): Black—Scholes Equation

It is well known that the price of the European call is given for S > 0 and
for0<t<Thy

u(S,t) = E [e"T9(Sp — K)*|F]

where T' is the maturity of the option, K its strike and where (F;), is the
filtration associated to the Brownian motion. The derivation of this type of
representation formula for the price of the options is described, for example,
in Karatzas & Shreve (1988).

In this case, the function u is a solution of the celebrated Black—Scholes
Equation
ou 1 ,.,0%

au _ . +
_E_EUS @—7’5%-{-7"11.—0 in R x (0,7,

with the terminal data
u(S,T)=(S—K)* inR*.

In this very simple case, there is no problem since u is given by an explicit
formula. But it can be interesting to take into account more complicated mod-
els with, for example, a non-constant interest rate r and/or a non-constant
volatility o. In order to do this, one needs an adapted theoretical tool to study
the equation and efficient numerical schemes to provide accurate approxima-
tions of the price u and also of du/dS which gives the hedging portfolio.

From a theoretical point of view, there is a difficulty due to the degeneracy
of the equation for § = 0. To avoid i, a natural idea is to make the change
of variable

v(z,t) = u(e®, t) forr € R,t€(0,T),
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which leads to the equation

v 1 ,0% 1 5\ Ov .
—_B—t_ﬁa @—( *50’)6—1:"}‘7"0:0 IIIIRX(O,T),

and then to use on this transformed equation the classical PDE theories

(Sobolev spaces, ... etc). We refer the reader to the book of Lamberton &

Lapeyre (1992) where this approach is described.

But using such PDE theories leads to work with weighted Sobolev spaces
because of the exponential growth of the solutions at infinity and it is never
pleasant to have to use these heavy techniques. Moreover, these weighted
Sobolev spaces have a priori no clear connection with the probabilistic for-
mula of representation for v and their use does not seem to be natural. So
it would be convenient to have a theoretical tool to avoid them and to avoid
also the exponential change.

2. American Options (Put): Variational Inequalities
In the pricing of American options, because of the possibility of early exercise,
the price u is given by a stopping time problem. In the case of a Put, one has
u(S,t) = inf E[e7OI(K — Sp)*|F]
8s.t.

where ‘s.t.” means that 8 has to be a stopping time with respect to {F;);.

It is well known that the price u of the option solves the variational in-
equality
9 o2 0%u

) 1 du 2\ n ot
Mm(———ﬁoSﬁ—rsggi-ru,u—(K—S) )—0 inR* x(0,7),

with the terminal data
w(S,T)=(K—-S)* inR*.

For the pricing of American options, we refer the reader to Bensoussan (1984)
and Karatzas (1988); the more general theory of optimal stopping time control
problems is described in Bensoussan & Lions (1978).

The problem is here obviously more complicated: indeed, there is no ex-
plicit formula for u — even for constant coefficients r and o ~ and we face a
nonlinear problem with the same degeneracy as in the case of the European
options above.

3. Lookback Options

Lookback options are options on the running maximum of the stock price, a
typical example of terminal pay-off being

+
(olél% Sy —Sr)t.
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This problem presents non-Markovian features: indeed, at time 0 < ¢t < T,
in order to compute the price of the option, one has to know not only the
current stock price S; but also the value of the running maximum max Sr.

ST

Therefore, the price of the option not only depends on t and on S; but
also on the running maximum max S,. To take this fact into account, one
T

has to introduce a new variable Z which carries the past information and the
associated process (Z); given for s > ¢ by

Zs = max (Z, max ST> ,
t<1<s

the idea being that, for Z = max S, then Z, = max S,.
0<r<t 0<r<s

To obtain the price of the lookback option, one has to consider the function
u, depending on S, Z and ¢, which is a solution of the problem

du 1 ,.,0% du P
Y 205852 rSaS-i-ru_O in{S <2z},

Ou .
—52=0 in{S> 2},

with the terminal data
u(S,Z2,T)=(Z-5)" inR*.

Indeed, the price of the lookback option at time 0 < ¢ < T and for a current
stock price S is given by u(S, Dax Sr,t).

The main new remark here is that we have to solve a degenerate equation in
the domain {S < Z} since there are no second-order derivatives with respect
to Z in the equation. In fact, it can be shown (cf. Barles, Daher & Romano
(1994)) that the above problem reduces to this equation in {S < Z} with the
oblique derivative boundary condition

du
—— =0 on{S=7}.
9z { }

In this simple case, there is an explicit formula for « but again as soon as
we consider non-constant coeflicients r and o or if we want to consider some
‘American’ type features in the option, adapted analytical and numerical tools
are needed to study wu.

The pricing of lookback options in the case of constant coeflicients is stud-
ied in Conze (1990). The optimal control problems on the running maximum
of a diffusion process are considered in Heinricher & Stockbridge {1991) by
probabilistic methods and in Barron (1993) and in Barles, Daher & Romano
(1994). In these two last papers, the applications to lookback options are
described.
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4. Asian Options (Options on the Average)
In this case, the terminal pay-off of the option is typically given by

LT Srdr — S i
T [) AT — o7 .
The main characteristics of these options are almost the same as for the look-

back options; the non-Markovian feature of the problem leads us to introduce
the process

1 L]
ZS=Z+T/t S.dr

for t <s.

To compute the price of the Asian option, one has to consider the solution
u of the equation

2
_Gu_ 102S2ﬂ - 7‘5% +ru— 5 0u

ot 27 7 882 as ToZ
with the terminal data

=0 inR* xR x (0,T),

u(S,2,T)=(Z-9)* inR".
The price of the Asian option at time 0 < ¢ < T and for a current stock price
1 gt .
S is then given by u (S, T/ S, dr, t).
0

Again we face here a degenerate equation, but this time, even with constant
coefficients, there is no explicit formula which can be used for a practical point
of view.

We refer to Barles, Daher & Romano (1994), Ingersoll (1987) and to Rogers
& Shi (1995) for a PDE approach of the pricing of Asian options.

5. Portfolio Management

The last example we want to give is a more complicated example taken from
the work of Tourin & Zariphopoulou (1993) where a lot of difficulties are
gathered. The equation satisfied by the value-function v(z,y) of the optimal
investment-consumption problem is the following

Min{ ég(f) (—%a2y2vyy — (rz — ¢)vy — by, — U(c) + ﬂv) ,
—vy + (1 + Mg, —(1 — v + vy} =0
in the domain

{+(1—-py>0 and z+ 1+ ANy =0},

where the subscripts in the equation mean differentiation with respect to z
or y, where o,1,b, A, 4 are constant coefficients, § > 0 and U is some given
utility function.
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We do not want to enter too much into the details of this equation and the
underlying portfolio management problem but we want to point out the main
difficulties one encounters here: we have, at the same time, a fully nonlinear
and degenerate equation with gradient constraints and with a state-constraint
boundary condition. All these difficulties together imply that the theoretical
and numerical treatment of this equation is very delicate.

We conclude this section by summarizing the main characteristics of all
the above equations: these equations are nonlinear and degenerate. This
implies that they have in general no classical solutions (‘smooth’ solutions).
Therefore, a notion of ‘weak’ solutions is needed in order to make sense of
the equations. But as soon as one defines a notion of weak solution, several
difficulties occur such as nonuniqueness problems, for example.

On the other (positive) hand, all these equations are degenerate elliptic
equations, i.e. they can be written as

H(z,u,Du,D*u)=0 inQ, (2.2)

where Q is a domain in RY and where H is, say, a continuous, real-valued
function defined on 2 xR xIRY x 8™, S™ being the space of N x N symmetric
matrices, and which satisfies the ellipticity condition

H(z,u,p, M) < H(z,u,p,N} #M=>N, (2.3)

foranyz € Q,u € R, p e RV,

This ellipticity property is a key property for defining the notion of viscosity
solutions for the equations (2.2): this fact will become clear in the next
section. From now on, we will always assume it is satisfied by the equations
we consider.

Remark All the above examples (except the last one) lead to parabolic
equations i.e., in particular, to time-dependent equations. To rewrite these
equations in the form (2.2), one has to set z = (y,t) where ¢ is the time
variable and y is the space variable (typically y = S in examples 1 and 2,
y = (S, Z) in examples 3 and 4). In these cases, D and D? stand respectively
for the gradient and for the matrix of second derivatives with respect to
z = (y,t) and not only to the space variables. It is clear that parabolic
equations are a particular case of degenerate elliptic equations since these
equations contain no second derivatives with respect to t.

3 The Notion of Viscosity Solutions

The notion of viscosity solutions was introduced by Crandall & Lions (1983)
(see also Crandall, Evans & Lions (1984)) for solving problems related to
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first-order Hamilton—-Jacobi Equations. We refer the reader to the ‘User’s
Guide’ of Crandall, Ishii & Lions (1992) for a complete presentation of this
notion of solutions and to the book of Fleming & Soner (1993) where the
applications to deterministic and stochastic optimal control theory are also
described.

In order to introduce the notion of viscosity solutions, we give an equivalent
definition of the notion of classical solution which uses only the Maximum
Principle.

Theorem: (Classical solutions and Maximum Principle) u € C?*()
is a classical solution of

H(z,u,Du,D*u) =0 in Q,

where H is a continuous function satisfying (2.3), if and only if
Vo € C%(Q), if 7o € Q is a local maximum point of u — @, one has

H (o, u(xo), Dyp(z0), D*¢(z0)) <0,

and
Yo € C*(Q), if zo € ) is a local minimum point of u — , one has

H(o,u(zo), Dg(z0), D*¢(z0)) > 0.
0

The proof of this result is very simple: the first part of the equivalence just
comes from the classical properties

Du(zo) = Dp(zo) , D*u(xo) < D%p(z0) ,
at a maximum point zo of v — ¢ (recall that v and ¢ are smooth) or
Du(zo) = Dp(zo) ,  D*u(z) > D*p(x0) ,

at a minimum point zo of u — . One has just to use these properties to-
gether with the ellipticity property (2.3) of H to obtain the inequalities of
the theorem.

The second part is a consequence of the fact that we can take ¢ = u
as test-function and therefore H(zq, u(zo), Du(zo), D*u(zo)) is both positive
and negative at any point zg of € since any zy € € is both a local maximum
and minimum point of u — u.

Now we simply remark that the equivalent definition of classical solutions
which is given here in terms of test-functions ¢ does not require the exis-
tence of first and second derivatives of u. For example, the continuity of «
is sufficient to give a meaning to this equivalent definition; so we use this
formulation to define viscosity solutions.
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Definition: (Continuous Viscosity Solutions) u € C(Q) is a viscosity
solution of

H(z,u,Du,D*u) =0 in Q,
where H is here a continuous function satisfying (2.3), if and only if
Vo € C*(Q), if 7o € Q is a local maximum point of u — ¢, one has

H (z0,u(z0), Dp(z0), D*p(z0)) <0,

and

Vi € C%(Q), if 2o € Q is a local minimum point of w — ¢, one has

H(m07 u($0)v D(p(fl:o), D2<p(l’0)) >0

a

We now give a few concrete examples of equations where there is a unique
viscosity solution but no smooth solutions.

The first example is

Ou
ot

ou

+6m

=0 in R X (0,4+00). (3.1)

It can be shown that the function u defined in R X (0, +00) by
u(z,t) = —(lz] +1)*,

is the unique viscosity solution of (3.1} in C(R x (0,+00)). It is worth
remarking in this example that » is only continuous for ¢ > 0 despite the
initial data

u(z,0) = —z* in R,

is in C*°(R). In particular, this problem has no smooth solution as it is
generally the case for such nonlinear hyperbolic equations.

Moreover, if we consider (3.1) together with the initial data
u(z,0) =|z] in R, (3.2)

then the functions u;(z,t) = |z| — ¢ and us(z,t) = (Jz| —t)* are two ‘general-
ized’ solutions in the sense that they satisfy the equation almost everywhere
(at each of their points of differentiability). This problem of nonuniqueness is
solved by the notion of viscosity solutions since it can be shown that u, is the
unique continuous viscosity solution of (3.1)-(3.2). In that case, the notion
of viscosity solutions selects the ‘good’ solution which is in that example the
value-function of the associated deterministic control problem (cf. Fleming
& Soner (1993)).
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For second-order equations, non-smooth solutions appear generally as a
consequence of the degeneracy of the equation as in the following example

ou  ,0M )
2% % @—O in R x (0, 400) (3.3)
u(z,0) =|z|* in R, (3.4)

where 0 < o < 1. The unique uniformly continuous viscosity solution of this
problem is
u(z,t) = |z|%*@ D in R x (0, +00) ,

and u is only Holder continuous in z. The singularity of v at z = 0 exists
because the equation is degenerate at = = 0.

Now we turn to the problem of taking in account the boundary condi-
tions: this is a well known difficulty with degenerate equations since losses of
boundary data may occur. :

We consider for example the Dirichlet problem

{H(I,u,Du,D2u)=0 in 2,
u=g on 982 ,

where g is a given continuous function.

In order to solve this Dirichlet problem, a classical idea consists in consid-
ering the approximate problem

{ —eAu, + H(z,ue, Dug, D?u.) =0 in Q,
Ue = g on 0N} .

Indeed, by adding a —eA term, we regularize the equation in the sense that
one can expect to have more regular solutions for this approximate problem
- typically in C*(Q)NC(Q) —.

We assume that this is indeed the case, that this regularized problem has
a smooth solution u, and, moreover, that u, — u in C(Q). We forget for the
moment that the uniform convergence of u, to u on Q implies that u = g on
0 and we look for boundary conditions for u.

It is easy to see that the continuous function u satisfies in the viscosity
sense
H(z,u, Du,D%*u) =0 in Q,
Min(H(z,u, Du, D?u),u — g) <0 on 04,
Max(H(z,u, Du, D*u),u~g) >0 on 99,

where, for example, the ‘Min’ inequality on 92 means

Vo € C*(Q), if zo € O is a maximum point of u — @ on Q, one has

Min(H (zo, u(zo), Dp(z0), D*¢(z0)), u(m0) — g(z0)) < 0.
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The proof of the above claim is not difficult: it first consists in showing
that strict local maximum of minimum points of u — ¢ are limits of local
maximum of minimum points of u. — ¢ and then an easy passage to the limit
concludes. It remains to remark that the definitions of viscosity solutions
obtained by considering ‘strict local maximum of minimum points of u — ¢’
or ‘local maximum of minimum points of v — ¢’ are equivalent (cf. Crandall,
Ishii & Lions (1992)).

The interpretation of this new problem can be done by setting the equation
in § instead of 2. To do so, we introduce the function G defined by

H{z,u,p, M) ifzeQ,

G(l‘yu7p7M)={u_g 1fx€69

The above argument shows that the function u is a viscosity solution of

G(z,u,Du,D*u) =0 on

iff
G.(z,u,Du,D*u) <0 onQ
G*(z,u, Du,D*u) >0 onQ

where G, and G* stand respectively for the lower semicontinuous and upper
semicontinuous envelopes of G. Indeed, the ‘Min’ and the ‘Max’ above are
nothing but G, and G* on 9.

In the same way, for general boundary conditions,
F(z,u,Du)=0 ondQ,
we introduce the function G defined by

H(z,u,p, M) ifzeQ,
F(z,u,p) ifzed.

Gla,u,p, M) = {
The function u is said to be a viscosity solution of
G(z,u,Du,D*u) =0 onQ

if and only if it is a viscosity solution in € and if

G.<0 on 0N <<=
Min(H (z, u, Du, D*u), F(z,u, Du)) < 0 on 99

and

G*>0 ondd —
Max(H (z,u, Du, D*u), F(z,u, Du)) > 0 on 85} .
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Remark The above example of the Dirichlet problem shows what our conver-
gence result should be able to do: on one hand, it should take into account in
a general setting this type of passage to the limit with any kind of boundary
conditions (and this is the reason for introducing the formulation of the Gs).
On an other hand, it should avoid the uniform convergence property on the
u, which does not allow boundary layers and losses of boundary data (and
this is the reason for introducing discontinuous viscosity solutions now).

Now we give the general definition of discontinuous viscosity solutions.

Definition: (Discontinuous Viscosity Solutions) A locally bounded up-
per semicontinuous (usc in short) function u is a viscosity subsolution of the
equation
G(z,u,Du,D*u) =0 on Q
if and only if
Vo € C*(Q), if 2o € Q is a maximum point of u — ¢, one has

G.(xo, u(zo), Dp(20), D*p(x0)) < 0.

A lIocally bounded lower semicontinuous (Isc for short) function v is a
viscosity supersolution of the equation

G(z,u,Du,D*u) =0 on Q

if and only if
Vo € C*(Q), if zo € O is a minimum point of u — ¢, one has

G* (o, u(zo), Dp(xo), D¥p(xe)) > 0 .

A solution is a function whose usc and Isc envelopes are respectively vis-
cosity sub- and supersolutions of the equation. |

The first reason for introducing such a complicated formulation is to unify
the convergence result we present in the next section: we incorporate in the
function G the equation together with the boundary condition and this avoids
the need of having a different result for each type of boundary condition. The
possibility of handling discontinuous sub- and supersolutions is a key point
in the convergence proof.

4 Convergence of Numerical Schemes

A numerical scheme approximating the equation

G(z,u, Du,D*u) =0 on 7, (4.1)
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is written in the following way
S(p,z,u’(z),u”) =0 on Q

where S is a real-valued function defined on R* x @ x R x B(Q) where
B(Q) is the set of bounded functions defined pointwise on . We do not
denote this space by L*°(f2) since there is no measure theory involved here
and, moreover, we are considering functions defined pointwise and not only
almost everywhere.

We assume that the scheme satisfies the following assumptions.
Stability

For any p > 0, the scheme has a solution u?. Moreover, u” is uniformly
bounded, i.e. there exists a constant C > 0 s.t.

—-C<u”<C onQ,

for any p > 0.

Consistency
For any smooth function ¢, one has:

— S(p,y,d(y) +§,¢+§)

p—0 P
y—z
£—-0

> G.(z,¢(z), Dg(z), D*¢(z))

and

lim sup
p—0
y—o
§—-0

S(p,y, ¢>(y>p+ $2%9  @*(z, 6(x), Dé(z), D*6(x).

Monotonicity

S(p,z,t,u) < Sp,z,t,v)  ifu>w
for any p >0,z € Q, ¢t € R and u,v € B(Q).
Strong Comparison Result

If u is a usc subsolution of the equation (4.1) and if v is an Isc supersolution
of the equation (4.1), then

u<v on ().

The result is the following.

Theorem Under the above assumptions, the solution uf of the scheme
converges uniformly on each compact subset of Q to the unique viscosity
solution of the equation. O



Convergence of Numerical Schemes 13

Sketch of the proof We just describe the main steps.
1. We set
u(z) = Himinfu’(y) ,
p—0
y—oz
and

u(z) = limsup v*(y) .
p—0
y—e

The monotonicity and consistency assumptions on S imply that 7 and »
are respectively sub and supersolutions of the limiting equation.

2. By the Strong Comparison Result for the equation (4.1), we have

u on ).

IA
e

3. But, by definition

on §).

IS
IA
el

Therefore
T=u on,

and this equality implies the uniform convergence of u” to u ' =4 = u as a
simple variation on the proof of Dini’s Theorem. a

Remark The above proof is based on the so-called ‘half-relaxed limits method’
which was introduced by Perthame and the author (1987). This method al-
lows passages to the limit in fully nonlinear elliptic PDEs with only a uniform
bound on the solutions. It is worth mentioning that — because one needs only
this uniform bound — this method lets us treat problems where boundary
layers occur.

Now we discuss the assumptions on the scheme.

Consistency

For the ‘interior points’ of @ where the function G is generally continuous,
the consistency requirement is equivalent to

S(p_xzﬁ_(m — G(z,¢(z), Dé(z), D*$(2))

when p — 0 uniformly on compact subsets of €, for any smooth function ¢.
We recover here a more standard formulation and the apparent complexity of
the consistency assumption above just comes from the fact that we want to
handle at the same time the boundary conditions in a general setting which
leads to a discontinuous function G.
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Strong Comparison Result

This is the key result to get the convergence. Such results exist in the following
cases:

- For first-order equations: optimal Strong Comparison Results have been
proved for all kinds of ‘classical’ equations and boundary conditions (cf. Bar-
les (1994)).

— For second-order equations: optimal results are available for ‘Neumann’
type boundary conditions; for ‘Dirichlet’ type boundary conditions, optimal
results exist when the boundary condition is assumed in the classical sense (cf.
Crandall, Ishii & Lions (1992) and references therein). For the ‘generalized’
Dirichlet boundary conditions — where losses of boundary data may occur
{which implies that the equation is degenerate) — only the semilinear case
is well understood (cf. Barles & Burdeau (1994)). The case of the general
Dirichlet problem (fully nonlinear degenerate equation) is still open.

Monotonicity
This assumption can be understood with the following table:

S(p,z,u(z),u) =0 G(z,u, Du, D*u) = 0

If z € §2 is a maximum point of u— ¢, | If z € Q is a maximum point of u— ¢,
one has one has

Discrete Maximum Principle Maximum Principle

u<¢+¢ Du(z) = D¢(z)

where ¢ = u(z) — ¢(z). D?u(z) < D?*¢(x)

Monotonicity Ellipticity

S(p,z, (@) +&,¢+8) < -+ G(z,u, Dg(z), D*¢(z)) < ---

S(p, z,u(z),u) =0 G(z,u, Du(z), D*u(z)) = 0

It is clear enough from this table that the monotonicity assumption plays,
for the numerical scheme, exactly the same role as the ellipticity assumption
for the nonlinear PDEs we consider. Therefore

Monotonicity <> Discrete Ellipticity
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First examples

For the sake of simplicity, we first consider classical schemes approximating
the heat equation in one dimension

ou Ou

a 87_0 1nIR><(O,T),

with a given initial condition
u(z,0) =up(z) inR,

where ug is, say, a continuous bounded function.

We use below the standard notation in numerical analysis: u} denotes an
approximation of u(nAt, jAz) for n € N and j € Z where At and Az are re-
spectively the mesh size in ¢ and in z. We refer the reader to Glowinski, Lions
& Tremolieres (1976) and to Raviart & Thomas (1983) for an introduction

to basic methods in numerical analysis.

o The Standard Implicit Scheme
If u™ := (u}); is known, one can compute u"*! = (u}*h); by solving

ut o — At w9y n+1+un+1) -0.

J J ( Ax)2 ( J+1
The above equation has to be read as

S ((n+1)Az, jat, W il uit up) = 0
in other words, the above equation is the equation of the scheme at the

point ((n + 1)Az, jAt), the role of the variable * u” ’ is played here by

n+l  n+l . n
(uj+1’uj 17“_7')
n+1 n

It is clear since we have a ‘~’ in front of uj{y, +1 and u] that this scheme
is an unconditionally monotone scheme (there i 1s no condltlon either on At
or on Az). A consequence of this property is also that it is an uncondition-
ally stable scheme since the monotonicity property implies that the scheme
satisfies the Maximum Principle i.e.

max Ju7| < max Iu I,

for any n € N. And the boundedness of the initial data implies the bound-
edness of each u™.

o The Standard Explicit Scheme

At
un+1 _ u7_1 _

j 4 W( 41 2’LL +’lL )20
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We interpret this equality as above; in order to have the monotonicity prop-
erty, in particular with respect to u}, one should have the classical Courant—

Friedrichs-Levy condition
2At

By =

If this condition holds, we have a monotone and stable scheme.

Remark Before giving examples of numerical schemes which can be used
in options pricing, we want to mention that a general class of schemes for
which the above convergence result applies are, in optimal control theory,
those which are based on the Dynamic Programming Principle; we refer to
Kushner (1977, 1984) for the description of these schemes.

5 Numerical Schemes in Options Pricing:
Splitting Methods

We present in this section numerical schemes for computing the price of differ-
ent types of classical options; these schemes — or more sophisticated schemes
based on similar ideas — were implemented at the Caisse Autonome de Refi-
nancement (CDC group). We do not pretend that these schemes are the most
efficient in each cases (indeed they are not!). Our aim is to present simple
examples to emphasize the advantages of splitting methods.

The reason for using splitting methods was the following: we wanted to
build a program for computing the price of a wide variety of options and the
use of splitting methods allows us to have a very modular program since the
idea is to treat the equations and the constraints separately, one after the
other in the right order. In that way, to add more constraints (cap, floor,
partially American options, ... etc) is almost costless.

For the sake of simplicity, we are going to present these schemes on simpli-
fied equations presenting the same features: we essentially replace below the
Black-Scholes equation by the heat equation. Moreover we also present them
under the form of approximation schemes; to deduce numerical schemes from
them being completely straightforward. It will be clear in each case that the
assumptions for the convergence of these schemes are satisfied and we leave
the checking to the reader.

1. American options: Variational Inequalities

Max (%—Au,u—zﬁ) =0 inRY x(0,T),

with a given initial condition.

The scheme
1st Step given u”™, we solve
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w —~Aw=0 inRY x (0,At),
ot
w(z,0) = u™(z) inRY,
and we set .
w2 (z) = w(z, At) in RV,
2nd Step

1
un+1 — Inf(u"+7,z/1"+1) ,

where ¥"1(z) = ¢(z, (n + 1)At) for z € RV, i.e.

u"tt = Inf(S(At)u™, ¢y t)

where S is the semigroup associated with the heat equation.

17

This scheme is a very classical one: the second step is, in fact, a projection
on the convex set K := {u € C(R"); u < ¢"*'} and it is generally associated

with a Conjugate Gradient Method.

In this example, the claim we made at the beginning of this section becomes
more clear: we first treat the equation part by solving the heat equation and
then the constraint part by imposing © < 1. Notice that if this constraint had
been put only on some part of the space RY x (0, T'), the same type of scheme
could have been used. Finally we mention that cap and floor constraints are

treated in that way.

2. Lookback Options
The simplified problem is

ou :
E—Axu—o in {|z| < 2},
and
Ou .
—5—0 in {|z| > 2},

with an initial condition given.

The scheme
1st Step for any fixed z, we solve
a—w—Azw=O in RN x (0, At),
ot
w(z,0) = u™(z,z) inRY,
and we set .
u"t2(z, 2) = w(z, z, At).
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2nd Step
wti(z,z)  if |z] < 2,

n+1(

w1z, 2) =

iz, |z)) i |z) > 2

This scheme takes into account the different roles of the z and z variables
in the equation. It is worth noticing that, in step 1, we solve nondegenerate
problems with, for each z, the same equation: in practice, this means that
we have to factorize only once the matrix associated with the A, operator.
Of course, in concrete computations, step 1 is performed for a finite set of z,
namely for the grid points.

Despite these advantages and the fact that we know that this scheme is
convergent, it is not very accurate: it is a first-order accurate scheme and the
error made for a reasonable number of grid points is not satisfactory. We refer
the reader to Barles, Burdeau, Daher & Romano (1995) for an improvement
of this scheme by still using splitting methods but in a slightly different way
and with a better accuracy.

3. Options on the Average

Ou Q% du .
E—@—I£=O In]RX]RX(O,T),
with the initial condition given.

The scheme

1st Step for any fixed z, we solve

ow  OPw _
?ﬁ—éﬁ—() lIlIRX(O,At),

w(z,0) =u"(z,2z) inlR,
and we set .

u"2(z,z) = w(z,2,At) inR.
2nd Step for any fixed z, we solve

ou_ ow_
ot 8z

w(z,0) = u**3(z,2) in R

0 in R x (0, At),

and we set .
u"ti(z,2) = w(z,2,At) inR.

This scheme is closer to the classical idea of splitting methods, which can
be explained in the following way: in order to solve numerically

R+ F(u) =0 RN x(0,At),
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where [u] stands for (u, Du, D?u), we apply successively the schemes
u'/? = u® + AtFy([u]),

and
ul =u? + AtFy([u?]).

To justify this method, we perform the following formal computations, re-
placing u/? in the second equality by its value taken from the first one

ut =+ AtF (W) + AtF([u’ + AtFy([u°)))
= u’+ AtF([u”) + AtFy([w’]) + O ((At)?)
=~ + At (F([u]) + F([)) -

Therefore within terms of order O ((At)?), we have indeed a numerical
approximation of the equation.

It is clear, in this example, that the splitting methods allows us to treat
differently (using a variety of schemes, for instance) the different parts of an
equation or of a complex problem and this is their main advantage.

To conclude this article, we want also to mention that another difficulty in
numerically solving equations arising in finance comes from the fact that they
are set in unbounded domains. The first step, which consists in approximating
these equations by a problem posed in bounded domains, is not obvious since
the solutions may not have a well known behavior at infinity (cf. for example
the case of lookback options).

1t is shown in Barles, Daher & Romano (1995) that the convergence when
we let the domain tend to infinity is governed by phenomena of Large De-
viations type and therefore completely artificial boundary conditions on the
boundary of the domain of computations lead (theoretically) to an exponen-
tially small error inside the domain (only a boundary layer is or should be
observed). Nonetheless, this result is theoretical and a good guess on these
artificial boundary conditions can really improve the accuracy.
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