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Introduction

This is a book about the interpretation of quantum mechanics, and about the
measurement problem. The conceptual entanglements of the measurement problem
have their source in the orthodox interpretation of ‘entangled’ states that arise in
quantum mechanical measurement processes. The heart of the book is a uniqueness
theorem (Bub and Clifton, 1996; see chapter 4) that characterizes alternative ‘no
collapse’ interpretations of the theory, in particular observer-free interpretations
that don’t involve the measurement problem. From the perspective of the unique-
ness theorem, one sees precisely where things have gone awry and what the options
are.

One might wonder why, and in what sense, a fundamental theory of how physical
systems move and change requires an interpretation. Quantum mechanics is an
irreducibly statistical theory: there are no states of a quantum mechanical system in
which all dynamical variables have determinate or ‘sharp’ values — no states that are
‘dispersion-free’ for all dynamical variables. Moreover, so-called ‘no go’ theorems
exclude the possibility of defining new states in terms of ‘hidden variables,” in which all
dynamical variables — or even certain finite sets of dynamical variables — have
determinate values, if we assume that the values assigned to functionally related
dynamical variables by the new hidden variable states are subject to certain constraints,
and we require that the quantum statistics can be recovered by averaging over these
states. So it is standard practice to refer agnostically to ‘observables’ rather than
dynamical variables (which suggest determinate values evolving in time), and to
understand quantum mechanics as providing probabilities for the outcomes of
measurements of observables under physically well-defined conditions.

This neutrality only goes so far. All standard treatments of quantum mechanics take
an observable as having a determinate value if the quantum state is an eigenstate of that
observable.® If the state is not an eigenstate of the observable, no determinate value is
attributed to the observable. This principle — sometimes called the ‘eigenvalue-
eigenstate link’” — is explicitly endorsed by Dirac (1958, pp.46-7) and von Neumann
(1955, p.253), and clearly identified as the ‘usual’ view by Finstein, Podolsky, and

6 For an account of quantum states and their representation in Hilbert space see the appendix.
7 The term is due to Arthur Fine (1973, p.20).
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Rosen (1935) in their classic argument for the incompleteness of quantum mechanics
(see chapter 2). Since the dynamics of quantum mechanics described by Schrodinger’s
time-dependent equation of motion is linear, it follows immediately from this orthodox
interpretation principle that, after an interaction between two quantum mechanical
systems that can be interpreted as a measurement by one system on the other, the state
of the composite system is not an eigenstate of the observable measured in the
interaction, and not an eigenstate of the indicator observable functioning as a ‘pointer.’
So, on the othodox interpretation, neither the measured observable nor the pointer
reading have determinate values, after a suitable interaction that correlates pointer
readings with values of the measured observable. This is the measurement problem of
quantum mechanics.

There are three possible ways of resolving the measurement problem: We adopt what
Bell (1990) has termed a ‘FAPP’ (‘for all practical purposes’) solution, or we change the
linear dynamics of the theory (which, as I see it, means changing the theory), or we
change the orthodox Dirac-von Neumann interpretation principle.

FAPP solutions range from the Daneri-Loinger—Prosperi (1962, 1966) quantum
ergodic theory of macrosystems® to the currently fashionable ‘decoherence’ theories.
Essentially, the idea here is to exploit the fact that a macroscopic measuring instrument
is an open system in virtually continuous interaction with its environment. Because of
the typical sorts of interactions that take place in our world between such systems and
their environments, it turns out that almost instantaneously after a measurement
interaction, the ‘reduced state’ of the measured system and measuring instrument as a
composite subsystem of the universe is, for all practical purposes, indistinguishable
from a state that supposedly can be interpreted as representing a classical probability
distribution over determinate but unknown values of the pointer observable. The
information required to exhibit characteristic quantum interference effects between
different pointer-reading states is almost immediately irretrievably lost in the many
degrees of freedom of the environment. Since there are well-known difficulties with such
an ‘ignorance interpretation,’ there is usually a further move involving an appeal to
Everett’s (1957, 1973) ‘relative state’ or ‘many worlds’ interpretation of quantum
mechanics, where determinateness is only claimed in some relative sense. I discuss
versions of this approach in chapter 8, where T argue that the measurement problem is
not resolved by this manoeuvre.

The Bohm-Bub ‘hidden variable’ theory (1966a) modifies the linear dynamics by
adding a nonlinear term to the Schrodinger equation that effectively ‘collapses’ or
projects the state onto an eigenstate of the pointer reading and measured observable in
a measurement process (the resulting eigenstate depending on the hidden variable).
Currently the Ghirardi-Rimini-Weber theory (1986), with later contributions by
Pearle (Ghirardi, Grassi, and Pearle, 1990, 1991; Pearle, 1989, 1990), is a much more

8 For a critique, see Bub (1968).
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sophisticated stochastic dynamical ‘collapse’ theory, formulated as a continuous
spontaneous localization theory.

The remaining possibility is to adopt an alternative principle for selecting the set of
observables that have determinate values in a given quantum state. This was Bohm’s
approach, and also — very differently — Bohr’s. Bohm’s 1952 hidden variable theory or
‘causal’ interpretation (Bohm, 1952a; Bohm and Hiley, 1993) takes the position of a
system in configuration space® as determinate in every quantum state. Certain other
observables can be taken as determinate at a given time together with this ‘preferred’
always-determinate observable, depending on the state at that time. Alternative
formulations of Bohm’s theory present different accounts of ‘nonpreferred’ observables
such as spin. On the formulation proposed here, the theory is a ‘modal’ interpretation of
quantum mechanics, in the broad sense of van Fraassen’s notion (see chapter 6). For
Bohr, an observable has a determinate value only in the context of a specific, classically
describable experimental arrangement suitable for measuring the observable. Since the
experimental arrangements suitable for locating a quantum system in space and time,
and for the determination of momentum—energy values, turn out to be mutually
exclusive, there is no unique description of the system in terms of the determinate
properties associated with the determinate values of a fixed preferred observable. So
which observables have determinate values is settled pragmatically by what we choose
to observe, via the classically described measuring instruments we employ, and is not
defined for the system alone. Bohr terms the relation between space-time and
momentum—energy concepts ‘complementary,” since both sets of concepts are required
to be mutually applicable for the specification of the classical state of a system.

What is generally regarded as the ‘Copenhagen interpretation’ is some fairly loose
synthesis of Bohr’s complementarity interpretation and Heisenberg’s ideas on the
significance of the uncertainty principle. It is usual to pay lip service to the Copenhagen
intepretation as the ‘orthodox’ interpretation of quantum mechanics, but the interpre-
tative principle behind complementarity is very different from the Dirac-von
Neumann principle. (I discuss the relationship in detail in sections 7.1 and 7.2). Unlike
Dirac and von Neumann, Bohr never treats a measurement as an interaction between
two quantum systems, and hence has no need for a special ‘projection postulate’ to
replace the linear Schrodinger evolution of the quantum state during a measurement
process. Both Dirac and von Neumann introduce such a postulate to describe the
stochastic projection or ‘collapse’ of the state onto an eigenstate of the pointer reading
and measured observable — a state in which these observables are determinate on their
interpretation. (See Dirac, 1958, p. 36, and von Neumann, 1955, p. 351 and pp.417-18.)
The complementarity interpretation avoids the measurement problem by selecting as
determinate an observable associated with an individual quantum ‘phenomenon’
manifested in a measurement interaction involving a specific classically describable
experimental arrangement. Certain other observables, regarded as measured in the

? For an N-particle system, the configuration space of the system is a 3N-dimensional space, coordinatized
by the 3N position coordinates of the particles.
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interaction, can be taken as determinate together with this observable and the quan-
tum state.

Einstein viewed the Copenhagen interpretation as ‘a gentle pillow for the true
believer.!® For Einstein, a physical system has a ‘being-thus,” a ‘real state’ that is
independent of other systems or the means of observation (see the quotations in section
1.1 and section 6.1). He argued that realism about physical systems in this sense is
incompatible with the assumption that the state descriptions of quantum mechanics
are complete. What Einstein had in mind by a ‘completion’ of quantum mechanics is
not entirely clear, but on one natural way of understanding this notion (as an
observer-free ‘no collapse’ interpretation subject to certain physically plausible
constraints), the possible completions of quantum mechanics are fully characterized by
the uniqueness theorem in chapter 4.1!

This book begins with a survey of the problem of interpretation, as it arises in the
debate between Einstein and Bohr. Einstein’s discomfort with quantum mechanics
cannot be attributed to an aversion to indeterminism. He did not argue that quantum
mechanics must be incomplete because ‘God does not play dice with the universe.’
Rather, as Pauli put it, Einstein’s ‘philosophical prejudice’ was realism, not determin-
ism (section 1.1). It is not that all indeterministic or stochastic theories were
problematic for Einstein. What Einstein objected to were stochastic theories that
violate certain realist principles; or rather, he objected to taking such theories as
anything more than predictive instruments that would ultimately be replaced by a
complete explanatory theory.

Chapter 1 continues with a discussion of the transition from classical to quantum
mechanics, and a formulation of the measurement problem as a problem generated by
the orthodox (Dirac—von Neumann) interpretation of the theory. My main aim here is
to bring out the different ways in which dynamical variables and properties are
represented in the two theories. In classical mechanics, the dynamical variables of a
system are represented as real-valued functions on the phase space of the system and
form a commutative algebra. The subalgebra of idempotent dynamical variables (the
characteristic functions) represent the properties of the system and form a Boolean
algebra, isomorphic to the Boolean algebra of (Borel) subsets of the phase space of the
system. In quantum mechanics, the dynamical variables or ‘observables’ of a system are
represented by a noncommutative algebra of operators on a Hilbert space, a linear
vector space over the complex numbers, and the subalgebra of idempotent operators
(the projection operators) representing the properties of the system is a non-Boolean
algebra isomorphic to the lattice of subspaces of the Hilbert space. So the transition
from classical to quantum mechanics involves the transition from a Boolean to a
non-Boolean structure for the properties of a system.

There are restrictions on what sets of observables can be taken as simultaneously
determinate without contradiction, if the attribution of determinate values to observ-

10 In a letter to Schrodinger, dated May, 1928. Reprinted in Przibram (1967, p. 31).
1 See Fine (1986), especially chapter 4, for a different interpretation of Einstein’s view.
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ablesis required to satisfy certain constraints. The ‘no go’ theorems for hidden variables
underlying the quantum statistics provide a series of such results that severely limit the
options for a ‘no collapse’ interpretation of the theory.

In chapter 2, I present the Einstein—Podolsky—Rosen (1935) incompleteness argu-
ment, and several versions of Bell’s extension of the argument to a ‘no go’ theorem
demonstrating the inconsistency of stochastic and deterministic hidden variables,
satisfying certain locality and separability constraints, with the quantum statistics.

Chapter 3 deals with the Kochen and Specker (1967) ‘no go’ theorem, showing the
impossibility of assigning determinate values to certain finite sets of observables if the
value assignments are required to preserve the functional relations holding among the
observables. I present a new proof of the theorem for a set of 33 observables
(1-dimensional projectors), based on a classical tautology that is quantum mechani-
cally false proposed by the logician Kurt Schiitte in an early (1965) unpublished letter to
Specker.

Chapter 4 introduces the problem of interpretation, and contains the proof of the
uniqueness theorem demonstrating that, subject to certain natural constraints, all ‘no
collapse’ interpretations of quantum mechanics can be uniquely characterized and
reduced to the choice of a particular preferred observable as determinate. The preferred
observable and the quantum state at time ¢ define a (non-Boolean) ‘determinate’
sublattice in the lattice .# of all subspaces of Hilbert space — the sublattice of
propositions that can be true or false at time t. The actual properties of the system at
time ¢ are selected by a 2-valued homomorphism (a yes—no map) on the determinate
sublattice at time ¢, so the range of possibilities for the system at time ¢ is defined by the
set of 2-valued homomorphisms on the determinate sublattice. From this ‘modal’
perspective, the possibility structure of a quantum world is represented by a
dynamically evolving (non-Boolean) sublattice in .%, while the possibility structure of a
classical world is fixed for all time as the Boolean algebra 4 of subsets of a phase space.
The dynamical evolution of the quantum state tracks the evolution of possibilities (and
probabilities defined over these possibilities) through the evolution of the determinate
sublattice, rather than actualities, while the dynamically evolving classical state defines
the actual properties in a classical world as a 2-valued homomorphism on % and
directly tracks the evolution of actual properties. In a quantum world, the dynamical
state is distinct from the ‘property state’ (defined by a 2-valued homomorphism on the
determinate sublattice), while the classical state doubles as a dynamical state and a
property state.

Different choices for the preferred determinate observable correspond to different
‘no collapse’ interpretations of quantum mechanics. In chapter 5, T show how the
orthodox (Dirac-von Neumann) interpretation without the projection postulate can
be recovered from the theorem, and how the measurement problem is avoided in ‘no
collapse’ interpretations by an appropriate choice of the preferred determinate
observable. Property states must evolve in time so as to reproduce the quantum
statistics over the determinate sublattices defined by the dynamical evolution of
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quantum states. Since the determinate sublattice at time ¢ is uniquely defined by the
quantum state at ¢ and a preferred observable, it suffices to provide an evolution law for
the actual values of the preferred determinate observable. Following a proposal by Bell
(1987, pp. 176-7) and Vink (1993), I formulate a specific stochastic equation of motion
for the case of a discrete preferred observable, which reduces to the deterministic
evolution law of Bohm’s theory in the continuum limit, if the preferred observable is
continuous position in configuration space. It turns out that the interaction between a
measuring instrument and its environment plays a crucial role in guaranteeing that the
actual value of an appropriately chosen preferred determinate observable will evolve
stochastically in time so that the observable functions as a stable pointer in ideal or
non-ideal measurement interactions. In this respect, the choice of preferred observable
is constrained by the dynamics of system—environment interactions in our world: if we
want an interpretation of quantum mechanics to account for the measurement
interactions that are possible in our world, we need to choose a preferred determinate
observable for which measurement correlations persist under environmental ‘monitor-
ing.’ It is not the phenomenon of decoherence as a loss of interference that is relevant
here. Rather, the fact that measuring instruments are open systems interacting with
environments with many degrees of freedom turns out to have a very different
dynamical significance in an observer-free ‘no collapse’ interpretation with a fixed
preferred determinate observable.

In chapter 6, I show how Bohm’s causal interpretation (one natural way to develop
an Einsteinian realism within quantum mechanics) and the modal interpretation (in a
version generalized from earlier formulations by Kochen, 1985, and by Dieks, 1988,
1989a, 1994a,b) can be seen as two observer-free ‘no collapse’ interpretations in the
sense of the theorem. Bohm’s interpretation adopts position in configuration space as a
fixed preferred determinate observable, while the modal interpretation can be
understood as adopting a time-dependent preferred determinate observable derived
from the quantum state.

1 discuss Bohr’s complementarity interpretation as a ‘no collapse’ interpretation in
chapter 7, and show how this interpretation can be related to the orthodox (Dirac-von
Neumann) interpretation from the perspective of the uniqueness theorem.

The ‘new orthodoxy’ appears to center now on the idea that the original Copenhagen
interpretation has been vindicated by the recent technical results on environmental
decoherence. Sophisticated versions of this view are formulated in terms of ‘consistent
histories’ or ‘decoherent histories,” and trade on features of Everett’s ‘relative state’
interpretation of quantum mechanics as a solution to the measurement problem
(popularly understood as a ‘many worlds’ theory, in some sense). In chapter 8, I argue
that there is no real advance here with respect to Einstein’s qualms about the
Copenhagen interpretation. It is still a ‘gentle pillow for the true believer,” perhaps now
with the added attraction of a rather fancy goose-down comforter.

The coda concludes with a review of the main themes of the argument, and its
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significance for the debate on the interpretation of quantum mechanics and the
measurement problem.

In the appendix, I develop some mathematical machinery dealing with the structure
of Hilbert space and the representation of states, probabilities, and observables in
quantum mechanics. The discussion, which is intended to be self-contained for a reader
with some minimal mathematical competence, covers the ‘entangled’ states of quantum
systems that arise in measurement interactions and situations of the Einstein—
Podolsky-Rosen type, and the formalism for some illustrative examples dealing with
spin. No particular formal background is assumed, beyond a passing familiarity with
the basic concepts of vector spaces, complex numbers, and probability theory.



