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Introduction

Though this be madness, yet there is method in't.
(William Shakespeare)

I think I did pretty well, considering I started out with nothing but a
bunch of blank paper.
(Steve Martin)

Pierre Simon, Marquis de Laplace, showed in 1782 that Newtonian po-
tential obeys a simple differential equation. Laplace’s equation, as it now
is called, arguably has become the most universal differential equation
in the physical sciences because of the wide range of phenomena that it
describes. The theory of the potential spawned by Laplace’s equation is
the subject of this book, but with particular emphasis on the applica-
tion of this theory to gravity and magnetic fields of the earth and in the
context of geologic and geophysical investigations.

A Brief History of Magnetic and Gravity Methods

The geomagnetic field must surely rank as the longest studied of all the
geophysical properties of the earth. Curiosity about the mutual attrac-
tion of lodestones can be traced back at least to the time of Thales, a
philosopher of ancient Greece in the sixth century B.C. (Needham [194]).
The tendency of lodestones to align preferentially in certain directions
was known in China by the first century A.D., and perhaps as early as
the second century B.C. This apparently was the first recognition that
the earth is associated with a property that affects magnetic objects,
thus paving the way for the advent of the magnetic compass in China
and observations of magnetic declination.

xiii



xiv Introduction

The compass arrived in Europe much later, probably late in the twelfth
century A.D., but significant discoveries were to follow. Petrus Pere-
grinus, a scholar of thirteenth-century Italy, performed several impor-
tant experiments on spherical pieces of lodestone. His findings, written
in 1269, described for the first time the concepts of magnetic polar-
ity, magnetic meridians, and the idea that like poles repel but opposite
poles attract. Georg Hartmann, Vicar of Nuremberg, was the first Euro-
pean to measure magnetic declination in about 1510. He also discovered
magnetic inclination in 1544, but his writings went undiscovered un-
til after Robert Norman, an English hydrographer, published his own
careful experiments on inclination conducted in 1576. In 1600, William
Gilbert, physician to Queen Elizabeth I, published his landmark treatise,
De Magnete, culminating centuries of European and Chinese thought
and experimentation on the geomagnetic field. Noting that the earth’s
magnetic field has a form much like that of a spherically shaped piece
of lodestone, Gilbert proclaimed that “magnus magnes ipse est globus
terrestris” (“the whole earth is a magnet”), and magnetism thus be-
came the first physical property, other than roundness, attributed to
the earth as a whole (Merrill and McElhinny [183]). In 1838, the Ger-
man mathematician Carl Friederich Gauss gave geomagnetic observa-
tions their first global-scale mathematical formalism by applying spher-
ical harmonic analysis to a systematic set of magnetic measurements
available at the time.

The application of magnetic methods to geologic problems advanced
in parallel with the development of magnetometers. Geologic applica-
tions began at least as early as 1630, when a sundial compass was
used to prospect for iron ore in Sweden (Hanna [110]), thus making
magnetic-field interpretation one of the oldest of the geophysical ex-
ploration techniques. Early measurements of the magnetic field for ex-
ploration purposes were made with land-based, balanced magnets sim-
ilar in principle of operation to today’s widely used gravity meters.
Max Thomas Edelmann used such a device during the first decade
of this century to make the first airborne magnetic measurements via
balloon (Heiland [121]). It was soon recognized that measurements of
the magnetic field via aircraft could provide superior uniform coverage
compared to surface measurements because of the aircraft’s ability to
quickly cover remote and inaccessible areas, but balanced-magnet in-
struments were not generally amenable to the accelerations associated
with moving platforms. It was military considerations, related to World
War II, that spurred the development of a suitable magnetometer for
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routine aeromagnetic measurements. In 1941, Victor Vacquier, Gary
Muffly, and R. D. Wyckoff, employees of Gulf Research and Devel-
opment Company under contract with the U.S. government, modified
10-year-old flux-gate technology, combined it with suitable stabilizing
equipment, and thereby developed a magnetometer for airborne detec-
tion of submarines. In 1944, James R. Balsley and Homer Jensen of the
U.S. Geological Survey used a magnetometer of similar design in the
first modern airborne geophysical survey near Boyertown, Pennsylvania
(Jensen [143]).

A second major advance in magnetometer design was the development
of the proton-precession magnetometer by Varian Associates in 1955.
This relatively simple instrument measures the magnitude of the total
field without the need for elaborate stabilizing or orienting equipment.
Consequently, the proton-precession magnetometer is relatively inexpen-
sive and easy to operate and has revolutionized land-based and shipborne
measurements. Various other magnetometer designs have followed with
greater resolution (Reford [240]) to be sure, but the proton-precession
magnetometer remains a mainstay of field surveys.

Shipborne magnetic measurements were well under way by the 1950s.
By the mid 1960s, ocean-surface measurements of magnetic intensity
in the Northeast Pacific (Raff and Mason [234]) had discovered cu-
rious anomalies lineated roughly north-south. Fred Vine and Drum-
mond Matthews [286] and, independently, Lawrence Morley and Andre
Larochelle [186] recognized that these lineations reflect a recording of the
reversing geomagnetic field by the geologic process of seafloor spreading,
and thus was spawned the plate-tectonic revolution.

The gravity method too has a formidable place in the history of sci-
ence. The realization that the earth has a force of attraction surely
must date back to our initial awareness that dropped objects fall to the
ground, observations that first were quantified by the well-known exper-
iments of Galileo Galilei around 1590. In 1687 Isaac Newton published
his landmark treatise, Philosophiae Naturalis Principia Mathematica, in
which he proposed (among other revolutionary concepts) that the force
of gravity is a property of all matter, Earth included.

In 1672 a French scholar, Jean Richer, noted that a pendulum-based
clock designed to be accurate in Paris lost a few minutes per day in
Cayenne, French Guiana, and so pendulum observations were discov-
ered as a way to measure the spatial variation of the geopotential. New-
ton correctly interpreted the discrepancy between these two measure-
ments as reflecting the oblate shape of the earth. The French believed
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otherwise at the time, and to prove the point, the French Academy of
Sciences sent two expeditions, one to the equatorial regions of Ecuador
and the other to the high latitudes of Sweden, to carefully measure and
compare the length of a degree of arc at both sites (Fernie {88, 89, 90]).
The Ecuador expedition was led by several prominent French scientists,
among them Pierre Bouguer, sometimes credited for the first careful
observations of the shape of the earth and for whom the “Bouguer
anomaly” is named.

The reversible pendulum was constructed by H. Kater in 1818, thereby
facilitating absolute measurements of gravity. Near the end of the same
century, R. Sterneck of Austria reported the first pendulum instrument
and used it to measure gravity in Europe. Other types of pendulum in-
struments followed, including the first shipborne instrument developed
by F. A. Vening Meinesz of The Netherlands in 1928, and soon gravity
measurements were being recorded worldwide. The Hungarian geode-
sist, Roland von E6tvés, constructed the first torsional balance in 1910.
Many gravity meters of various types were developed and patented dur-
ing 1928 to 1930 as U.S. oil companies became interested in exploration
applications. Most modern instruments suitable for field studies, such as
the LaCoste and Romberg gravity meter and the Worden instrument, in-
volve astatic principles in measuring the vertical displacement of a small
mass suspended from a system of delicate springs and beams. Various
models of the LaCoste and Romberg gravity meter are commonly used in
land-based and shipborne studies and, more recently, in airborne surveys
(e.g., Brozena and Peters [43]).

The application of gravity measurements to geological problems can
be traced back to the rival hypotheses of John Pratt and George Airy
published between 1855 and 1859 concerning the isostatic support of
topography. They noted that plumb lines near the Himalayas were de-
flected from the vertical by amounts less than predicted by the topo-
graphic mass of the mountain range. Both Airy and Pratt argued that
in the absence of forces other than gravity, the rigid part of the crust
and mantle “floats” on a mobile, denser substratum, so the total mass in
any vertical column down to some depth of compensation must balance
from place to place. Elevated regions, therefore, must be compensated
at depth by mass deficiencies, whereas topographic depressions are un-
derlain by mass excesses. Pratt explained this observation in terms of
lateral variations in density; that is, the Himalayas are elevated because
they are less dense than surrounding crust. Airy proposed, on the other
hand, that the crust has laterally uniform density but variable thickness,
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so mountain ranges rise above the surrounding landscape by virtue of
underlying crustal roots.

The gravity method also has played a key role in exploration geo-
physics. Hugo V. Boeckh used an E&tvés balance to measure gravity
over anticlines and domes and explained his observations in terms of
the densities of rocks that form the structures. He thus was apparently
the first to recognize the application of the gravity method in the ex-
ploration for petroleum (Jakosky [140]). Indeed the first oil discovered
in the United States by geophysical methods was located in 1926 using
gravity measurements (Jakosky {140]).

About This Book

Considering this long and august history of the gravity and magnetic
methods, it might well be asked (as I certainly have done during the
waning stages of this writing) why a new textbook on potential theory
is needed now. I believe, however, that this book will fill a significant
gap. As a graduate student at Stanford University, I quickly found my-
self involved in a thesis topic that required a firm foundation in potential
theory. It seemed to me then, and I find it true today as a professional
geophysicist, that no single textbook is available covering the topic of po-
tential theory while emphasizing applications to geophysical problems.
The classic texts on potential theory published during the middle of this
century are still available today, notably those by Kellogg [146] and by
Ramsey [235] (which no serious student of potential theory should be
without). These books deal thoroughly with the fundamentals of po-
tential theory, but they are not concerned particularly with geophysical
applications. On the other hand, several good texts are available on the
broad topics of applied geophysics (e.g., Telford, Geldart, and Sheriff
[279]) and global geophysics (e.g., Stacey [270]). These books cover the
wide range of geophysical methodologies, such as seismology, electro-
magnetism, and so forth, and typically devote a few chapters to gravity
and magnetic methods; of necessity they do not delve deeply into the
underlying theory.

This book attempts to fill the gap by first exploring the principles of
potential theory and then applying the theory to problems of crustal and
lithospheric geophysics. I have attempted to do this by structuring the
book into essentially two parts. The first six chapters build the founda-
tions of potential theory, relying heavily on Kellogg [146], Ramsey [235],
and Chapman and Bartels [56]. Chapters 1 and 2 define the meaning
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of a potential and the consequences of Laplace’s equation. Special at-
tention is given therein to the all-important Green’s identities, Green’s
functions, and Helmholtz theorem. Chapter 3 focuses these theoretical
principles on Newtonian potential, that is, the gravitational potential of
mass distributions in both two and three dimensions. Chapters 4 and 5
expand these discussions to magnetic fields caused by distributions of
magnetic media. Chapter 6 then formulates the theory on a spherical
surface, a topic of obvious importance to global representations of the
earth’s gravity and magnetic fields.

The last six chapters apply the foregoing principles of potential theory
to gravity and magnetic studies of the crust and lithosphere. Chapters 7
and 8 examine the gravity and magnetic fields of the earth on a global
and regional scale and describe the calculations and underlying theory
by which measurements are transformed into “anomalies.” These discus-
sions set the stage for the remaining chapters, which provide a sampling
of the myriad schemes in the literature for interpreting gravity and mag-
netic anomalies. These schemes are divided into the forward method
{Chapter 9), the inverse method {(Chapter 10), inverse and forward ma-
nipulations in the Fourier domain (Chapter 11), and methods of data en-
hancement (Chapter 12). Here I have concentrated on the mathematical
rather than the technical side of the methodology, neglecting such topics
as the nuts-and-bolts operations of gravity meters and magnetometers
and the proper strategies in designing gravity or magnetic surveys.

Some of the methods discussed in Chapters 9 through 12 are accom-
panied by computer subroutines in Appendix B. I am responsible for the
programming therein (user beware), but the methodologies behind the
algorithms are from the literature. They include some of the “classic”
techniques, such as the so-called Talwani method discussed in Chapter 9,
and several more modern methods, such as the horizontal-gradient calcu-
lation first discussed by Cordell [66]. Those readers wishing to make use
of these subroutines should remember that the programming is designed
to instruct rather than to be particularly efficient or “elegant.”

It would be quite beyond the scope of this or any other text to fully
describe all of the methodologies published in the modern geophysical
literature. During 1992 alone, Geophysics (the technical journal of the
U.S.-based Society of Exploration Geophysicists) published 17 papers
that arguably should have been covered in Chapters 9 through 12. Mul-
tiply that number by the several dozen international journals of similar
stature and then times the 50 some-odd years that the modern method-
ology has been actively discussed in the literature, and it becomes clear
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that each technique could not be given its due. Instead, my approach
has been to describe the various methodologies with key examples from
the literature, including both classic algorithms and promising new tech-
niques, and with apologies to all of my colleagues not sufficiently cited!
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