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1

Introduction

The behavior of particles interacting under the laws of quantum
mechanics is a fundamental concern of both physics and chemistry.
The equations describing a system of two particles can be solved
efficiently to any needed accuracy. When more than two particles
interact simultaneously, however, the ab initio quantum mechanical
calculations offer little insight.

Fortunately, the actual behavior of the system may be quite
simple, even when the underlying equations are not. Depending
on the physical situation, only a few degrees of freedom may be
relevant. If these degrees of freedom involve the motion of all the
particles in the system, we call the motion collective. A familiar
example of collective motion is sound in solids. Sound waves are
described by a field that acts on all particles in the system in
the same way, depending only on the location of the particles.
The field is particularly simple for infinite systems because the
translational invariance permits only a very regular motion in the
normal modes, each mode having a definite wavelength. In finite
systems the existence of a surface is very important in determin-
ing the normal modes, and the modes cannot be described with
definite wavelengths. Nevertheless, we shall see in the finite sys-
tems examined here that the important modes are often simple to
characterize.

In the language of quantum mechanics, motion in a system
is usually described in terms of transitions between energy levels.
Each transition has its own frequency, corresponding to the energy
difference between the two levels. Collective motion makes its
appearance in the quantum language when particular states have
large transition amplitudes. We will see that it is then often

1



2 1 Introduction

possible to describe the transition rather well, even though many
of the details of both the initial and final states are not well
known.

If we were to make a complete theory of finite systems, we would
have to begin with its equilibrium properties. We would first like
to know what the stable structure of the system is. How large is it,
where are the particles, what is its binding energy? The answers
depend not only on the intrinsic forces but upon the conditions
under which the system is studied, whether it is cold and in its
ground state, or hot and in some statistical ensemble of states.

In this book we pass over these interesting first questions and
jump directly to the question, how does the system respond to
the external environment? In particular, if the system is subjected
to an external field, how do the particles move and how does
the system as a whole absorb energy? In classical physics, this is
partly answered by finding the normal modes of the system, the
small-amplitude vibrations. One of the fascinating properties of
the quantum systems is that the classical modes still set the stage
for the quantum motion, even though in principle that motion can
be much richer.

In this first chapter, we introduce our subject with an overview
of the experimental methods used to study the oscillations of finite
quantum systems. Later chapters will discuss the theory, starting
from classical concepts appropriate to collective motion. We will
then build the quantum theory one step at a time.

1.1 Probing the system with photons

Electromagnetic fields provide one of the most important methods
for probing many-particle systems ranging from molecules and
atomic clusters on the scale of nanometers, down to nuclei on a
scale of femtometers. The electromagnetic interaction is completely
known, it is strong enough to produce easily observed effects, and
yet it is weak enough for the effect of the interaction to be
separated from the intrinsic properties of the system under study.

We must first distinguish between static electromagnetic fields
and fields that vary in time. With static fields, one studies polar-
izabilities and static electromagnetic moments, i.e., properties of
the equilibrium state. The time-varying fields are generally more
interesting, since they can induce internal motion. Physically,
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the simplest such field is a free electromagnetic wave, described
quantum-mechanically with photons. In the language of photons,
one can treat all physical processes using scattering theory. The
most important concept is the cross section, which is the proba-
bility of the system’s absorbing a photon multiplied by the area
illuminated by the photon beam. From an experimental side,
properties are investigated by measuring the cross sections. A
schematic sketch of an experiment to measure a photon cross
section is shown in Fig. 1.1. A well-collimated beam of photons
passes through a monitor and enters a detector such as a spectro-
meter. The absorbing material to be investigated is placed in the
photon beam between these two instruments, and absorbs some
fraction of the beam. The fraction is given by the ratio of photons
transmitted, Ny, to photons incident, No. The latter might be
determined by taking the absorber out of the beam. The cross
section relates the attenuation to the areal density of particles in
the cell, ny. This is given by ny = Lpx/A, where L is Avogadro’s
number, p is the density of the absorber, x is its length, 4 the
atomic or molecular weight. Then the cross section ¢ is obtained
from

1
= —1 No/Nys) .
o= 0g.(No/Ny)

This is the attenuation method for measuring cross sections. A
simple example of its use is shown in Fig. 1.2. Here is graphed the
transmitted intensity of an infrared beam passing through a gas
cell containing the molecule HCI. The attenuation factor, Iy /Iy,
is shown as a function of the wavenumber of the photon. Notice
that the spectrum consists of a number of narrow lines. These
are resonances that correspond to definite transitions between
quantum states of the molecule. The HC] molecule is a nearly rigid
object at these frequencies; only the quantized states of vibration
and rotation play a role in the transition frequencies. The widths
of the resonances in this spectrum are extrinsic, associated with
instrumental resolution and interactions between the molecules.
Other extrinsic effects, such as the Doppler shift of the radiation
on a moving molecule, can affect the apparent width as well. The
intrinsic width of the resonance is an important property of the
molecule itself, but is too small to observe under the experimental
conditions of Fig. 1.2. In the usual nomenclature, the width T is
defined as the interval of energy over which the cross section is
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Fig. 1.1. Schematic representation of a photon absorption experiment.

more than half its maximum value. We shall also use the same
symbol to express the interval in angular frequency units. The
width of a state I' is related to its mean lifetime t by the simple
formulas

1 .
= - (frequency units)

h .
I'=— (energy units).
T

In the unit conversion, Planck’s constant 7 is often conveniently
expressed as i = 6.7 x 10716 ¢V s. Our next example of photon
absorption shows a case where the intrinsic width of the excitation
is a significant fraction of the photon’s frequency. The system
studied is the gadolinium atom, and the photons are in the X-ray
region. The absorption cross section for photons in the energy
range 120-200 eV is shown in Fig. 1.3. The main feature in
the spectrum is a broad, somewhat asymmetric peak in the cross
section. The resonance is caused by the single-electron transition
from an inner d-shell to the valence f-shell in the atom. The width
of the peak is intrinsic to the atom and is associated with the
lifetime of an electron to escape from the f-shell. In this atom,
there is a small barrier in the f-wave potential that produces a
resonant state having a finite width.

In the above examples of a molecule and an atom, the spec-
tra are rather directly related to the single-electron atomic shell
physics or to the geometric properties of a quantum vibrator.
The next example is from systems of atoms that display more
subtle interaction effects between the electrons, namely, metal
atom clusters. These clusters have been studied intensively re-
cently (cf. the proceedings of the Konstanz conference (1991) and
references therein). In typical experiments the clusters are formed
in beams and probed with photons or external perturbations while
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Fig. 1.2. Transmitted intensity of an infrared beam passing through a cell
containing gaseous HCI, as a function of photon wavenumber(courtesy
of R.A. Bertsch). The lines form a band corresponding to the angular
momentum states of the lowest vibrational transition. Wavenumber
units n are related to photon wavelength 4 and photon energy e, by
n =1/ =8067.5(ey)ey cm~.

still in the beam. These stringent conditions are needed to study
the clusters because they are generally quite fragile and would dis-
appear on contact with a surface or collision with another particle.
The photon absorption spectra for the alkali metal cluster Nag is
shown in Fig. 1.4. In this system, there is a single prominent peak
in the spectral region associated with the valence electron shells.
We shall see in Chap. 5 that the strength of this peak is close to
the maximum permitted for a valence transition at this energy;
its strength nearly exhausts an energy-weighted sum rule. This
implies that the valence electrons from all of the atoms participate
together in the resonance. The position of the resonance is differ-
ent from the single-electron shell energy: in a sodium atom, the
valence s to p transition has a wavelength of 589 nm, but in the
cluster formed by eight atoms the peak is around 500 nm. The
collective interaction effects have shifted the peak downward in
wavelength and upward in frequency. If this were a classical sys-
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Fig. 1.3. The absorption spectrum of Gd vapor in the range of the
transition 4d — f making use of the 500 MeV synchrotron of Bonn
(from Connerade and Pantelouris (1984)).

tem of free electrons, the resonance frequency would be calculable
with Newtonian mechanics and electrostatics. The classical theory
produces a definite formula, and the corresponding resonance is
called the Mie resonance, named after a pioneer investigator of
electromagnetic resonances in spherical dielectrics (Mie 1908). In
this mode, the electrons simply move back and forth uniformly
with a spherical volume, as depicted in Fig. 1.5. In the sodium ex-
ample, the Mie resonance corresponds to a wavelength of 430 nm,
which is smaller than observed. Thus, the finite system behaves
somewhere between the limiting extremes of the isolated atom and
of a sphere of metallic sodium.

Nuclear physics provides many examples of excitations in which
the neutrons and protons making up the nucleus move collectively.
For nuclear physics, the convenient length scale is the femtometer,
1 fm =10~ m, and the corresponding energy scale is MeV,
megaelectron volts. Photon absorption experiments still follow the
classical set-up of Fig. 1.1. The source of photons is most often
bremsstrahlung radiation from very energetic electron beams. To
select photons of a given energy range, it is not possible to use
diffraction as in the case of optical photons or X-rays. Instead, the
individual photons must be ‘tagged’ by measuring simultaneously
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Fig. 1.4. Photoabsorption cross section of Nag (in angstroms squared,
1 A=10"% cm ) as a function of the photon wavelength in nm (Wang et
al. (1990)). The clusters were generated by expanding sodium vapor from
a high-temperature oven source into a vacuum. The cross section was
determined making use of the technique of beam photodepletion. In this
method, a pulsed laser beam is directed collinear with but counterpropa-
gating the cluster beam. The beam is detected by ionizing it with another
photon source and then accelerating it through a quadrupole mass ana-
lyzer. At resonance with the pulsed laser frequency, the cluster beam is
depleted due to dissociation of the excited clusters that had absorbed a
photon from the laser beam. Note that this experiment measures only the
dissociation cross section, which is equal to the absorption cross section
only if the cluster has adequate time to decay and nondissociative decay
processes are negligible.

the electron that produced the photon and the electron’s energy
loss. Another difficulty is that the attenuation method for measur-
ing cross sections is less easy to use because only a fraction of the
photons are absorbed directly by the nucleus. Most of the beam at-
tenuation comes from interactions with electrons. Nevertheless the
attenuation method can be applied, yielding cross sections such as
shown in Fig. 1.6. Here we see the photon absorption cross section
on the nucleus '2C, measured for photons in the energy range of
15 to 100 MeV. The main feature of the spectrum is a single peak,
which is located at an energy near 25 MeV. This is called the giant
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Fig. 1.5. Schematic representation of the giant dipole resonance in
atomic nuclei and of the surface plasmon resonance in small metal
clusters. The wavelength of the photon exciting these vibrations is large
with respect to the diameter of the system. As a result the electric
field associated with a passing gamma ray is nearly uniform across the
system. In the case of the excitation of the atomic nucleus, the field exerts
a force on’the positively charged protons, thus separating them from
the neutrons. In fact, the neutrons act as having an (effective) negative
charge, which oscillates out of phase with respect to the positively charged
protons. This is the reason why the giant dipole vibration is an isovector
vibration. In the case of metal clusters, the electric field associated with
the photon exerts a force on the positively charged ions and an identical
force but with opposite direction on the electrons. Because the ions
have a mass which is three orders of magnitude larger than that of the
electron, the displacement of the electron cloud is much larger than that
of the positive background.

dipole resonance. Its strength, as measured by the energy-weighted
sum rule, shows that it is a collective excitation involving all of
the protons and neutrons. The motion is very similar to that of
the Mie resonance. The protons move uniformly back and forth,
as shown in Fig. 1.5. The neutrons also move, in an opposite sense
from the protons, because, for an internal excitation, the center of
mass of the system cannot oscillate, but only recoil. A magnified
view of the '2C giant dipole resonance is shown in Fig. 1.7. In
this experiment, the cross section for producing neutrons from the
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Fig. 1.6. Nuclear photoabsorption cross section of the carbon nucleus,
shown as a function of the photon energy. The cross section is given in
millibarns ( 1 bn = 1072 cm?, 1 mb = 10727 cm? ). The peak at around
23 MeV is due to the giant dipole resonance. The angular frequency
of the oscillation is given by w = E/h = (23 MeV)/(6.7 x 1072 MeV
s) = 3 x 102! s71, corresponding to an ordinary frequency of f = /21 =
5 x 10%° Hz. The data is from Ahrens et al. (1972).

absorbed photons was measured. In contrast, in an attenuation
experiment, one measures the total cross section for any beam
interaction. The finite width of the resonance is clearly seen, as
well as the fact that it is not a smooth function. As we shall see in
Chap. 9, in these nuclear systems the width is not due primarily
to the escape of particles. It is caused by mixing the collective
mode with more complicated internal excitations. The irregulari-
ties in these internal states produce the extra structure in this cross
section.

It is amusing to look at photon interactions on an even smaller
scale, for example, the absorption on a single proton. The ex-
perimental spectrum is shown in Fig. 1.8. It shows a resonant
peaking similar to that seen for nuclei or larger systems. In this
case, the proton behaves as a composite system, and the particles
responsible for the resonance are its quark constituents. Although
we presented this figure, it is really beyond the domain of our
book; the theory is far from adequately developed for quarks and
their interactions.
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Fig. 1.7. Total photoneutron cross section (y,total) = {(y,n)+(y,2n)+...]
associated with >C. The photons in this experiment were produced by
an electron beam, and their energy measured (‘tagged’) by detecting the
slowed electrons. The beam passed through a target of 1>C, and neutrons
produced by the photoabsorption were detected in coincidence with the
tagged photons. The giant dipole resonance at 23 MeV is seen in this
higher resolution experiment to have a substructure of smaller peaks.
The data is from Berman and Fultz (1975).

1.2 A second probe of resonances: inelastic scattering

Resonant photon absorption, which we surveyed in the last section,
involves mainly photons whose wavelengths are much larger than
the size of the cluster. In the long wavelength limit the electric
field is nearly uniform over the entire cluster, and the preferred
induced motion is just a uniform displacement of the charges. If
we wish to study more complex patterns of motion, the external
field must have some spatial variation. Also, fields other than the
electromagnetic may be interesting to study in their own right.
Such fields can be made by scattering a particle from the system.
Indeed, one of the early experiments in quantum mechanics was
the famous Franck-Hertz experiment, which produced excitations
in atoms by the inelastic scattering of electrons. Of course, that
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Fig. 1.8. Cross section for photons scattering from protons, shown
as a function of the energy of the photon. The strong peak is due to
the A-resonance, an excited state of the proton (from Hernandez et al.
(1990)).

experiment was very crude; the energy transfer to the atom was
detected by a decreased current from the slowed electrons.

In modern experiments one measures both the energy loss of
the scattered particle and its angular deflection. The energy loss
corresponds to the frequency of the excitation in the system as
in the photon absorption process, but the angular deflection pro-
vides completely new information about the system. The deflection
caused by the diffraction of the quantum mechanical waves as-
sociated with the particle is related to the spatial distribution of
the field acting on the particle. This is a familiar technique for
studying bulk materials; the distribution of atoms in a crystal is
inferred from X-ray or neutron diffraction patterns.

According to the laws of quantum mechanics, the field produced
by a scattering particle has a spatial variation given by the product
of the initial and final wave functions of the particle. A mode will
be more or less difficult to excite depending on how the motion of
the particles in the mode fits together with the spatial variation of
the field. Since the field can be varied by looking at scattering in
different directions, more detailed information about the excitation
mode can be extracted.
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Before surveying the inelastic scattering phenomena, it is useful
to orient ourselves with a look at elastic scattering. Fig. 1.9 shows
the diffraction pattern for neutron and X-ray diffraction on a
crystalline solid. The concentration in sharp peaks is, of course,
associated with the long-range order of a bulk crystalline ma-
terial. When the projectile interacts weakly with the medium, the
diffraction is easy to interpret. The two wave functions describing
the electron in the initial and final channels, are plane waves
y; = exp(ip;r) and yy = exp(ipsr), where p; and py are the angular
wavenumber vectors of the waves, related to the momentum P
of the particles by the DeBroglie relation, P = hp. The product
of the two wave functions is also a plane wave, w,-w} = exp(igr),
satisfying

q = ps—Di
The relationship of these wave vectors to the scattering angle is

shown in Fig. 1.10. For elastic scattering, the wavenumber q is
expressed in terms of the scattering angle 6 by the simple formula

q = 2p sin(0/2). (1.1)

The amplitude for scattering at the corresponding angle 6 is di-
rectly proportional to the Fourier component of the potential field
felt by the projectile at wavenumber ¢. In a finite system, the
Fourier transform varies smoothly with g and thus the scattering
will be a smooth function of angle rather than sharply peaked as
in scattering from crystals.

Our first example of diffractive scattering in a finite system is
the scattering of electrons from the nucleus ®Pb. The differential
cross section is shown in Fig. 1.11 as a function of the scattering
angle. The three curves show the cross section for elastic scattering
and inelastic scattering to the first and second excited states of
the nucleus 2%Pb. The bombarding energy of the electrons is
500 MeV, giving them a wavelength corresponding to an angular
wavenumber p = E/hc ~ 2.5 fm~!. The cross section falls off
very steeply with scattering angle, reflecting the fact that the
Coulomb potential is a smooth function with a steeply falling
Fourier transform. However, the angular distribution also shows
a mild oscillatory behavior, which is traceable to the finite size of
the charge distribution.

It is easy to make a qualitative numerical connection between
the size of the nucleus, the wavelength of the electron, and the
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Fig. 1.9. X-ray and neutron diffraction patterns for magnetite at room
temperature (from Kittel (1968)).
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Fig. 1.10. Inelastic scattering of a fast particle with angular wavenumber
p. Relation between the scattering angle 8§ and momentum transfer hg.

period in the diffraction pattern. The observed angular distribution
shows an oscillation with successive maxima spaced by about
11°. From eq. (1.1), this corresponds to a change in the angular
wavenumber by about ¢ ~ 0.5 fm~!. An extended object with
a well-defined surface at a distance R from the center has an
oscillatory Fourier transform whose extrema are approximately

separated by an angular wavenumber q satisfying

gR =~ 7. (1.2)
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Fig. 1.11. Elastic and inelastic electron scattering differential cross
section associated with the ground state, and with the lowest 3~ and 2%
states of 298Pb, as a function of momentum transfer. The elastic data
is from Frois et al. (1977); the inelastic scattering data has been taken
from Heisenberg (1981).

This implies, for small angle scattering, that the maxima in the
scattering cross section are separated by

AO = . 1.3)
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Thus we infer directly from the electron scattering data that the
nucleus 2Pb has a radius of about 6.5 fm. This argument is, of
course, very rough; the actual theory of the scattering incorporates
deviations of the electron wave function from the plane waves, and
allows one to infer accurately the complete shape of the charge
distribution in the nucleus.

In Fig. 1.12 we show a similar experiment using protons instead
of electrons as projectiles. In the region shown, only the nuclear
interaction is important. The diffractive structure is more pro-
nounced in this case for two reasons. First, the nuclear interaction
is short-range and its Fourier transform does not fall off as rapidly
as that of the Coulomb interaction. Second, the projectile is ab-
sorbed in the interior of the nucleus, and its wave function cannot
be treated as a plane wave any more. The interior absorption,
in effect, concentrates the wave physics on the outer part of the
nucleus and emphasizes the role of the nuclear surface. Again,
the diffraction pattern relates directly to the wavelength of the
projectile and the size of the nucleus. The calculation inferring the
nuclear size from this data is carried out in the figure caption.

We next give an example of electron scattering from the atomic
physics domain. Experiments are usually done with electrons of
rather low energy. This makes the experiments more difficult to
interpret, because the electron wave functions are strongly dis-
torted. The example is electron scattering on Xe atoms, measured
with electrons of 1 eV energy. The angular distribution is shown
in Fig. 1.13. This shows a very strong diffraction structure, with
a strong maximum at forward scattering angles, a minimum near
30°, and a secondary maximum near 90°. In this example, the
bombarding electron has far too low an energy to be treated as
a plane wave. The diffractive structure can be understood only
in terms of partial wave decomposition of the projectile wave
function or detailed numerical models of the potential and the
resulting wave function distortion. In any case, if one tries the
same estimates as discussed previously, one obtains g ~ 0.5 A~!
and R ~ 4 A, which is somewhat larger than the xenon radius.

1.3 Energy transfer in inelastic scattering

We now examine inelastic scattering more closely from the point
of view of the energy transferred to the system. The most detailed
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Fig. 1.12. Angular distribution of elastic and inelastic proton scattering
for the 2%Pb ground state and excited states at 2.6 and 3.2 MeV are
given. The data was taken from Blanpied et al. (1978). In this case, the
energy of the proton was E, = 800 MeV and its angular wavenumber k
is obtained from the relativistic formula (E, + m,c?)? = (mpc?)? + (hpc)?,
giving p = 7.4 fm™!. The diffraction peaks in the data are separated by
about 3.5°, consistent with eq. (1.3) for a radius R ~ 6.8 fm.
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Fig. 1.13. Angular distribution of electrons scattered elastically from
xenon at a bombarding energy of 1 eV (from Weyhreter et al. (1988)).

measurements are in nuclear physics, and our examples come
mostly from this area. The momentum transfer and associated
wave number g are well-defined quantities when we deal with
weakly interacting projectiles, and we can discuss the distribution
of inelastic scattering as a function of energy loss, keeping the mo-
mentum transfer fixed. A schematic energy distribution function
is shown in Fig. 1.14. Starting from zero energy loss, we first see
a peak associated with elastic scattering. This is shown as Region
I in the figure; experimentally the energy resolution would smear
the peak over some interval of energy. Going up in energy a little
bit, of the order of an MeV, we come to Region II which contains
discrete energy levels that can be excited and studied individually.
The density of these levels increases very sharply with energy,
and at some point individual levels can no longer be resolved.
Nevertheless bumps may still be present in the spectrum. One of
these is marked as Region III in the figure. This is the region
of the giant resonances, which occur at excitations of the order of
ten to twenty MeV. They can be excited by inelastic scattering as
well as by photon absorption. When the momentum transfer #q is



