PROCESS ALGEBRA

J.C.M. Baeten and W.P. Weijland
Centre for Mathematics and Computer Science, Amsterdam

5 CAMBRIDGE
UNIVERSITY PRESS

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge, CB2 1RP

40 West 20th Street, New York, NY10011-4211, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1990

First published 1990
Reprinted 1995

Printed in Great Britain by The Ipswich Book Company,
Ipswich, Suffolk

Library of Congress cataloguing in publication data available

British Library cataloguing in publication data available

ISBN 0 521 40043 0

Contents

1. Preliminaries
1.1 Introduction
1.2 Terms and equations
1.3 Algebras
1.4 Term rewriting systems

2. Basic process algebra
2.1 The basic system
2.2 Deadlock and termination
2.3 Recursion
2.4 Projection and bounded non-determinism
2.5 The term model
2.6 Projective limit model
2.7 Process graphs
2.8 Regular processes
2.9 Stack

3. Concurrent processes
3.1 Interleaving
3.2 Some theorems on PA
3.3 Merge and termination
3.4 Models
3.5 Bag
3.6 Renaming

4. Communication
4.1 Communication function
42 ACP
4.3 Some theorems on ACP

SO W

21
25
29
37
42
45
60
62

67
70
75
79
83
87

91
93
96

Contents

4.4 Termination 100
4.5 Models 102
4.6 Examples 105
4.7 Alternating Bit Protocol (specification) 108
4.8 Queue 114

5. Abstraction

5.1 Abstraction and silent step 119
52 ACP? 122
5.3 Termination 126
5.4 Models 129
5.5 Recursion 145
5.6 Divergence and fairess 151
5.7 Alternating Bit Protocol (verification) 160
5.8 Observation equivalence 162
6. Features
6.1 Priorities and interrupts 169
6.2 Alphabets and conditional axioms 174
6.3 Localization, traces and restriction 179
6.4 State operator 185
6.5 Asynchronous communication 190
6.6 Asymmetric communication 193
6.7 Process creation 197
6.8 Synchronous cooperation 199
6.9 Signals and observation 205
7. Semantics
7.1 Bisimulation and trace semantics 209
7.2 Failure and ready semantics 212
7.3 Failure trace and ready trace semantics 216

8. Sources and related work

8.1 Historical remarks 221
8.2 CCS 223
8.3 CSP 224
Bibliography 227
Glossary 235
Index of names 239

Index of symbols and notation 243

Chapter 1

Preliminaries

1.1 INTRODUCTION

This book provides a systematic introduction to process algebra, suitable for teaching purposes.
By the term process algebra we mean the study of concurrent communicating processes in an
algebraic framework, following the approach of J.A. Bergstra and J.W. Klop (see section 8.1).
In the present book we treat concurrency theory (the theory of concurrent communicating
processes) in an axiomatic way, just as for instance the study of mathematical objects as groups
or fields starts with an axiomatization of the intended objects. This axiomatic method is
algebraic in the sense that we consider structures (also called "process algebras") as models of
some set of (mostly) equational axioms. These structures are equipped with several operators,
and so we use the term algebra in the sense of model theory. R. Milner, with his Calculus of
Communicating Systems (CCS), is generally considered to be the initiator of the field of
process algebra. CCS forms the basis for most of the axiom systems presented below.

There is ample motivation for such an axiomatic-algebraic approach to concurrency theory.
The main reason is that there is not one definitive notion of process. There is a staggering
amount of properties which one may or may not attribute to processes, there are dozens of
views (semantics) which one may have on processes, and there are infinitely many models of
processes. So an attempt to organize this field of process theories leads very naturally and
almost unavoidably to an axiomatic methodology. A curious consequence is that one has to
answer the question "What is a process?" with the seemingly circular answer "A process is
something that obeys a certain set of axioms ... for processes". The axiomatic method has
proven effective in mathematics and mathematical logic. In our opinion it has its merits in
computer science as well, if only for its organizing and unifying power.

Next to the organizing role of this set-up with axiom systems, their models and the study of
their relations, we have the obvious computational aspect. Even more than in mathematics and
mathematical logic, in computer science it is algebra that counts. For instance, in a system
verification the use of transition diagrams may be very illuminating. For larger systems,
however, it may be desirable to have a formalized mathematical language at our disposal in

2 Preliminaries

which specifications, computations and proofs can be given in what is in principle a linear
notation. Only then can we hope to succeed in attempts to mechanize formal dealings with the
objects of interest. In our case the mathematical language is algebraic, with basic constants,
operators to construct larger processes, and equations defining the nature of the processes under
consideration. (The format of pure equations will not be enough, though. On occasion, we will
use conditional equations and some infinitary proof rules.) To be specific: we will always insist
on the use of congruences, rather than mere equivalences in the construction of process
algebras, in order to preserve the purely algebraic format.

A further advantage of the use of the axiomatic-algebraic method is that the entire apparatus
of mathematical logic and the theory of abstract data types is at our service. For instance, one
can study extensions of axiom systems that are homomorphisms of the corresponding process
algebras, and one can formulate exact statements as to the relative expressibility of some
process operators (definability results).

Of course, the present axiomatizations for concurrency theory do not cover the entire
spectrum of interest. Several aspects of processes are as yet not well treated in the algebraic
framework. The most notable examples concern the real-time behaviour of processes, and what
is called frue concurrency (non-interleaving semantics). Algebraic theories for these aspects are
under development at the moment, however.

In our view, process algebra can be seen as a worthy descendant of "classical” automata
theory as it originated three or four decades ago. The crucial difference is that nowadays one is
interested not merely in the execution traces (or language) of one automaton, but in the
behaviour of systems of communicating automata. As Milner and also Hoare, in his
Communicating Sequential Processes (CSP), have discovered, it is no longer sufficient to
abstract the behaviour of a process to a language of execution traces. Instead, one has to work
with more discriminating process semantics, in which also the timing of choices of a system
component is taken into account. Mathematically, this difference is very sharply expressed in
the equation X-(y + z) = X'y + X'z, where + denotes choice and - is sequential composition;
X,¥,Z are processes. If one is interested in languages of execution traces (trace semantics), this
equation holds, but in process algebra it will in general not hold. Nevertheless, process algebra
retains the option of adding this equation and studying its effect. In fact, one goal of process
algebra is to form a uniform framework in which several different process semantics can be
compared and related (see chapter 7). One can call this comparative concurrency semantics.

We bring structure in our theory of process algebra by modularization, i.e. we start from a
minimal theory (containing only the operators +,), and then add new features one at a time.
This allows us to study features in isolation, and to combine the modules of the theory in
different ways.

The book contains enough material for a one-year graduate course for students of computer
science or mathematics. Also, shorter courses can be given. A short course may for example
consist of chapters 2,3,4, and optionally chapter 5 or chapter 7.

There are no specific prerequisites, but some exposure to mathematics, specifically algebra
and logic, will come in handy.

Every section, except this one, will be concluded with a number of exercises, which the
reader can use to check his understanding of the material. Also, some theory is treated in the

Introduction 3

exercises, but such theory will not be used later on, so that the exercises can be skipped without
problems.

We conclude with a short overview of the contents. In the rest of this chapter, we give a
review of the algebraic notions that we will use in the remaining chapters. In chapter 2 we
discuss the basic theory, with alternative composition (non-deterministic choice) and sequential
composition as operators. We formulate a few simple laws for these operators, and discuss
subjects like recursion (processes specified by means of recursive equations). We also take a
look at various models for the theory.

In chapter 3 we add parallel composition, and in chapter 4 communication. A large example
of how to use the resulting theory in practical applications is a specification of the alternating bit
protocol.

In chapter 5 we consider at length the difficult issue of abstraction. We look at notions like
fairness, and verify the alternating bit protocol specified in chapter 4.

In chapter 6 we discuss some additional features and operators that can be used in certain
applications. Chapter 7 considers different ways to give semantics for theories of concurrency,
and chapter 8 looks at the relationship of the theory that is presented in this book with other
concurrency theories, specifically CCS and CSP. The book concludes with a bibliography on
concurrency.

1.2 TERMS AND EQUATIONS

1.2.1 DEFINITION ,
We begin with the concept of an equational specification (,E). Here, E is a set of
equations of the form ty = t; where ty and {, are terms and ¥ is the signature, i.e. the set
of constant and function symbols that may appear in the specification. Y, also gives the arity of
each function symbol (the number of arguments). The equations are often referred to as
axioms.

1.2.2 EXAMPLE
The equational specification E4 in table 1 describes the natural numbers, and has a constant
symbol 0 and function symbols S (successor), a (addition) and m (multiplication).

We see that signature ¥4 has a constant symbol 0, and function symbols s, a and m of arity
1, 2 and 2 respectively. A function symbol of arity 1 is called unary, and of arity 2 binary. A
function symbol is sometimes called an operator symbol.

afx, 0) = x

a(x, sfy)) = s(a(x, y))
m(x,0)=0

m{x, s(y)) = a(m(x, y), X)

TABLE 1.

4 Preliminaries

1.2.3 NOTE

We talk about function symbols and constant symbols. We do this in order to distinguish
between these purely formal objects and "real” functions (or operators) and constants in "real”
algebras, which we will discuss later in 1.3. For now, we play a purely formal game with sets
of symbols and equations that have no meaning as yet.

1.2.4 DEFINITION

The four axioms of Eq also contain variables x,y. We will always assume that every signature
Y contains as many variables as we want. We denote variables by X, y, Z, ..., possibly
subscripted.

1.2.5 DEFINITION
Now we can define inductively the notion of a term:
i. variables X, y, ... are terms;
ii. constant symbols C, C, ... are terms;
jii. if F is a function symbol of arity n, and ty,...,t, are terms, then F(tq,...,tn) is a term.
A term that contains a variable is called an open term; a term without variables is called a
closed or ground term.

1.2.6 DEFINITIONS
In an equation with open terms like
m(x, s(y) = a(m(x, y), x) M
we may substitute terms from the signature 3, for the variables. For example, we can substitute
s(s(0)) for x and O for y to obtain
m(s(s(0)), s(0)) = p(m(s(s(0)), 0), s(s(0))) 2.
The variables X and y are bound to the terms s(s(0)) and O respectively. If a variable X is bound
to a term, this term must be substituted in every occurrence of X. So separate occurrences of a
variable cannot be bound to different terms.
We have just shown that equation (2) can be derived from E4; in symbols
E1 - m(s(s(0)), s(0)) = p(m(s(s(0)), 0), s(s(0)))-
In general, derivability of an equation either means that it is in E, by the rule
i. s=te E implies E - s=t,
or that it can be obtained from E by means of the following three rules:
ii. substitution:
E b t(Xq,..Xp) = S(X{,--,Xp) implies E = t(ty,.....tn) = S(t1,...tn);
iii. forming contexts:
E + t=s implies E - C[f] = Cl[s],
where C[]is a context, i.e. a term containing a hole []asinm(x,[]). In other
words: if E I t=s, then in every occurrence of t as a subterm in a larger term it can
be replaced by s. In this formulation the rule is often referred to as the replacement
rule.
iv. the equivalence properties of =, namely:
symmetry: E t=simplies E+ s=t;
reflexivity: Er t=t;

Terms and equations 5
transitivity: E t=s and E+ s=u imply E - t=u.

1.2.7 EXAMPLE
We prove that E4 + a(s(0), s(0)) = s(s(0)):

1. EqF a(x, s(y)) = s(a(x, ¥)) (the second equation of E{)
2. Eq+ a(s(0), s(0)) = s(a(s(0), 0)) (substitution in line 1)
3. Eyrax,0)=x (the first equation of Eq)
4, B¢+ a(s(0), 0) = s(0) (substitution in line 3)
5. E4+ s(a(s(0), 0)) = s(s(0)) (using the context S([]) and line 4)
6. E4+ a(s(0), s(0)) = s(s(0)) (transitivity of =, from 2 and 6)

(In this way, we can make 1+1=2 difficult!)

Usually, we are not so long-winded, and will write down the proof above as follows:

E¢ + p(s(0), s(0)) = s(p(s(0), 0)) (from the second equation)
= 5(s(0)) (from the first equation).

1.2.8 DEFINITION
Another important notion is that of the occurrence of a term s in a term t. For instance, the
term $(0) occurs twice in the term m(s(s(0)), s(0}). When s occurs in t, we call § a subterm
of t.
We use the notation = for syntactical identity, i.e. t =s when t,s are identical terms.
Note that = is different from =. For instance, we have
E4 + p(0, 0) = 0, but not p(0, 0) =0.

1.2.9 EXAMPLE
We add to the signature 3.4 of example 1.2.2 a binary function symbol e (exponentiation). We

extend the set of equations E4 to E5 in table 2.

X, 0) = s(0
e(x, s(y)) = m(e(x, y), x)
TABLE 2.

Using a more suggestive notation, we can write down Ej as in table 3.

X+0=x

X +8(y) =s(x +Y)
x0=0
x-s(y) = X'y + X
x0 = s(0)

x8{¥) = x¥-x
TABLE 3.

6 Preliminaries

1.2.10 CONDITIONAL EQUATIONS
Sometimes we will use implication symbols = in our specifications, interpreted as logical

implication. An axiom of the form G = s=t (sometimes written as =), with G a set of

equations, is called a conditional equation (or conditional axiom). If G is an infinite set,
we talk about an infinitary conditional equation. A specification in which a conditional
equation occurs is called a conditional specification. What we call a conditional
specification, is called a theory in mathematical logic. In the literature equational specifications
(thus without the symbol =) are often called algebraic specifications.

In the case of conditional equations, we extend the definition of derivability in 1.2.6 with
the following clause:
v. If the conditional equation G = s=t is in E, and, for a certain substitution, all substitution
instances of G are derivable from E, then the substitution instance of s=t is derivable from E
(using the same substitution).

1.2.11 EXERCISES
1. Show that E4 = m(s(s(0)),s(s(0}))) = a(s(s(0)),s(s(0))).
2. Show by an inductive argument that for every closed term t over X4, either E4 - t=0, or
there is a term t' such that Eq - 1 = s(t).
It follows that for every closed term t over X4, there is a term t' of the form s"(0) (n>0) such
that Eq - t = t'. (The terms sN(0) are defined inductively: s9(0)=0, and s™+1(0)=s(s"(0}).)
3. The same as exercise 2, but now for (3,5,E5).
4. Prove that (a) Ex - x + (y + 0) = (x + y) + 0, and (b) if for a closed term t we have E; -
X+(y+1t=(x+y)+t thenalso Eo x + (y + s{t)) = (x + y) + s(}).

Notice that this proves the associativity x + (y + z) = (X + Y) + z for all closed terms z
(use exercise 3).
5. Prove that E; - x-{y + z) = x'y + X'z for all closed terms X,y,z. Hint: write Z in the form

sN(0) and use exercise 4.
6. Let Eg = {F(F(F(x)))=x, F(F(F(F(F(x)))))=x}. Prove that Eg - F(x) = x.

1.3 ALGEBRAS

1.3.1 SEMANTICS

Until now, we have only talked about syntax: sets of equations without meaning. Now we
discuss the meaning or semantics of specifications (X,E). We talk about an algebra or
model: an algebra A consists of a set of elements, A, together with constants in A and
functions f from AP to A (where n is the arity of f). The set A is called the universe or
domain of A.

1.3.2 EXAMPLES

(N,+,,5,0) is the algebra of the natural numbers (N = {0,1,2,...}) with functions +, -, s and
constant 0. (Z,+,,5,0) is the algebra of the integers (Z = {..-2,-1,0,1,2,...}) with the same
signature, but with a larger domain. (Z,+,",p,s,0) is the algebra of integers with the predecessor

Algebras 7

operator p, and has a richer signature than (Z,+,-,5,0), but apart from the presence of p they are
the same.

Another example is the algebra of the Booleans B=(B,xor,and,not,0), where B = {0,1}, 0
is a constant symbol ("falsity"), and and not are the usual conjunction and negation operators
and xor is the "exclusive or" operator, defined by:

xor(x, y)=1 < x=1or y=1, but not: x=1 and y=1.

It is important to see that (by definition) the domain of an algebra is closed with respect to
function applications. For instance, if we would want to define an algebra (N,+,-,p,s,0) of
natural numbers with predecessor then we cannot just adopt the definition of p from the larger
model (Z,+,,p,5,0) since in the latter we have that p(0) = -1 which is not an element in N.
Therefore, under the same interpretation of p the algebra (N,+,*,p,s,0) is not well-defined.

1.3.3 DEFINITION
If ¥ is a signature, then we call the algebra A a Z-algebra when there is a correspondence
between the constant symbols in Y, and the "real” constants, and between the formal function
symbols in ¥ and the "real" functions with the same arity in A. Such a correspondence is called
an interpretation.

For example, if 3. 1={a,m,s,0} like in example 1.2.2, then we can make (N,+,-,s,0) into a
Y.1-algebra by means of the interpretation

a—+
m— -
§—S8
0—0.
Notice that there is also another interpretation, viz.
a—-
m—+
S—S8
0—0.

1.3.4 DEFINITION

If A is a X -algebra, then the equation ty = t5 over (2,E) has a meaning in A, when we interpret
the constant and function symbols in ty, to by the corresponding constants and functions in A.
Further, the variables X,y..... in 11,t> are always universally quantified, e.g.

a(x, s(y)) = s(a(x, y)) @)
means in (N,+,",5,0) that:
foralinme N n+s(m)=s{n+m) .

If this second statement (**) is actually true in A, we write
A E a(x, s(y)) = s(a(x, y))
and say: A satisfies (*), or (*) holds in A.
For a conditional equation, this works similarly; the equation
X+s(0)=y = y=5(x)
means in (N,+,,8,0) that:
forallnm e N, if n+1=m, then m=s(n).
If the Y-algebra A satisfies all equations t1 = t of E, we use the abbreviation

8 Preliminaries

Ak E.
If this is the case, we say that A is an algebra for E, or a model of E. We also say that E is
a sound axiomatization of A,

1.3.5 EXAMPLE

We have (N,+,',8,0) = E{ (E as in 1.2.2) under the first interpretation of 1.3.3 (not under the
other one). One might think that N = (N,+,-,5,0) is the only model for E4, but that is not the
case: this algebra is not uniquely determined. Another algebra that satisfies E is B = (B, xor,
and, not, 0) from 1.3.2, under the interpretation

a— xor
m — and
s — not
0—0.

satisfies even more equations than (N,+,,8,0), because B = s(s(x)) = x, but A ¥
s(s(x)) = x (* means: does not satisfy). Thus, in general a specification has more than one
model.

1.3.6 INITIAL ALGEBRA
Let us write Alg(X,E) for the set of X -algebras A with A = E. Then there is one special
algebra in Alg(X,E), the so-called initial algebra of (¥,E) — denoted by I(X,E) — that
satisfies only E and nothing more. To be more precise: the domain of I{(X,E) consists of
equivalence classes of closed terms over (2,E), such that two closed terms § and t are
equivalent iff E - s=t.

As a consequence, 1(2,E) satisfies only those equations between closed terms that are
formally derivable from E, and no others, which is expressed as follows:

For all closed terms t,s
(2 E)t=s < (X,E)F t=s

One can think of the initial algebra as the sez of closed terms (over Y,) modulo derivability.

There may be several algebras in Alg(X,E) that satisfy the property in the box (i.e.
equations between closed terms hold iff they are derivable from the theory). Such an algebra is
called complete for the theory (X,E), or the theory is called a complete axiomatization of
the algebra.

1.3.7 EXAMPLE
Let (24,E1) be as in 1.2.2 (table 1). Then, the initial algebra I(3.4,E{) has a domain with
elements as in fig. 1.

Every element is an equivalence class of closed terms, and two terms belong to the same
equivalence class exactly when E4 proves that they are equal. In fact, I(3{,E{) is "the same" as
(N,+,-,8,0). To be exact: they are isomorphic, meaning that there exists a one-to-one
correspondence between the domain elements of both models preserving the function equalities.

Algebras 8

FIGURE 1.

1.3.8 DEFINITION
Suppose we want to alter a model by identifying elements from its domain by means of some
equivalence relation (thus decreasing the number of its elements). Then we may wonder
whether the resulting structure — with classes of elements in its domain, instead of the elements
themselves — is again a model. As it turns out, this is not always the case: we need to make sure
that in the new model the function values remain independent from the choice of the elements
from its equivalence class.

Let A be a Y-algebra, then a congruence on A is a binary relation R on the domain A of A
that satisfies the following requirements:
i. Ris an equivalence relation on A (i.e. reflexive, symmetric and transitive);
ii. for every n and every n-ary function f of X, we have for all a1,..,ap, bq,...by € A the
following implication:

R(ay, by) & & R(a,, by) = R{f(ay.....ap), f(Dq,....0R)).
This second requirement states that R behaves correctly with respect to functions of 3. The
relation R can be seen as an intended equality relation between objects.

1.3.9 DEFINITION
If R is a congruence on A, then we can obtain a new X.-algebra by factoring B out on A. The
new algebra is called A/R, pronounced A modulo R, and the elements of this algebra are the
equivalence classes of R on A. If we denote the equivalence class of a ({b €A : R(a, b)}) by
[a], then the interpretation of the constants and functions in A/R is as follows:

a is mapped to [a];

f((al, ..., [an)) = [f(@1,-...an)}.

In order to characterize the initial algebra exactly, we need the following important property

of this factoring construction.

1.3.10 THEOREM
The intersection of a family of congruences is again a congruence.

PROOF: see exercises.

10 Preliminaries

1.3.11 PROPOSITION

Now let a signature ., be given which generates at least one closed term and let I{Y) denote the
set of closed terms over Y. In fact, I(X) is a X-algebra-itself, since the set of closed terms
contains the constants and is closed under the functions. Now let a set of equations E be given,
and define R to be the intersection of all congruence relations R on I(X) with the property that
I(X)/R = E. Then I(2))/RE is exactly I{X,E) (i.e. is isomorphic to it).

1.3.12 TERMINOLOGY
The initial algebra I(¥,E) is also called the term model of (3,E). For example, the term model
of ({a,m,s,0}, Eq) (see 1.2.2) is isomorphic to the model of natural numbers {N,+,-,s,0).

In the literature, the expression abstract data type is used in many different ways. In one
of them, Alg(3,E) is an abstract data type, but in another it is I(2,E).

1.3.13 NOTE

It is possible that there is an equation t = S between open terms 1,S, that holds in an initial
algebra I(3,E), but that does not follow from E. An example of this is the equation X + y =
Yy + X, which holds in (N,+,,5,0), but is not derivable from E (see exercises).

1.3.14 THEOREM
The following is the completeness theorem for conditional equational theories:

for all open terms t,S:
(2, E)-t=s & forallAe Alg(Z,E): Ak t=s

A corollary of this theorem is that E4 has a model in which X + ¥ = y + X does not hold (see
note 1.3.13).

1.3.15 EXERCISES

1. Show that B in 1.3.5 is indeed a model of (¥4,E4).

2. Find a model of (¥4,E¢) in which X +y =y + x does not hold.

3. Verify that B &= s(m(x, y)) = a(a(s(x), s(y)), m(s(x),s (y)}) (B from 1.3.5). Does this
formula also hold in (N,+,",5,0)?

4. Prove theorem 1.3.10.

1.4 TERM REWRITING SYSTEMS
1.4.1 MOTIVATION

Let us look again at the equational specification (34,E4) of 1.2.2, that has the equations in table
1 (copied below).

a(x,0) = x

a(x,s(y)) = s(a(x,y))
m(x,0)=0

m{x,s(y)) = a(m(x,y).x)
Now we can "calculate” that "2 + 2 =4":

Term rewriting systems 11

a(s(s(0)),s(s(0)))
s(a(s(s(0)),s(0)))
s(s(a(s(s(0)),0)))
s(s(s(s(0))))-
The equations in table 1 have a certain direction when applied in this derivation: when read
from left to right they simplify terms, they reduce them. Therefore, we write — instead of =, as
in table 4.

a(x,0) — x

a(x,s(y)) — s(a(x.y))
m(x,0) - 0

m(x,s(y)) — a(m(xy).x)
TABLE 4.

This is an example of a term rewriting system or term reduction system (TRS).

1.4.2 DEFINITION

A term rewriting system (3,,R) consists of a signature Y, and a set of (rewrite) rules R.
The rules have the form ty — tp, where t{ and t, are terms over X (as defined in 1.2.5).
Moreover, we must have:

i. 14 is not just a variable;

ii. every variable that occurs in t5, must already occur in ty (a rewrite rule may not introduce
any variables).

1.4.3 DEFINITION

Just like in 1.2.6, we can derive reductions from a TRS. We define a relation — on terms (one
step reduction) as follows: t{ — t5 holds when this is derivable from the rewrite rules R by
means of:

i. substitution;

ii. forming contexts.

Thus, the rewrite steps in example 1.4.1 (where we reduced 2+2 to 4) are all one step
reductions.

Then, we define the relation —» (reduction relation) on terms as follows:

t{ — t5 holds when there are a number of one-step reductions that lead from t4 to t5 (this
number may also be 0). To be somewhat more formal: t4 —» to holds when this is derivable
from the relation — by:

iii. t9 —>» toifty o to;
iv. (reflexivity)t —» t;
v. (transitivity) if 4 —» t5 and tp —» t3 then also ty —» t3;
So in example 1.4.1 we have a(s(s(0)),s(s(0})) = s(s(s(s(0)))).

1.4.4 DEFINITION

Let (3,R) be a TRS.

i. A termtis a normal form, or is a term in normal form, if there is no term S with t — s.
ii. A term t has a normal form if there is a term s in normal form such thatt — s.

12 Preliminaries

1.4.5 PROPERTIES OF A TRS
It is very desirable for a TRS that every (closed) term has a unique normal form. For example,
for the TRS in table 4 (in 1.4.1) we can prove (not without difficulty!) that every closed term
has a unique normal form of the form s"(0) (with n=0).

Often, such a proof consists of proving that the following two properties are satisfied by a
TRS:
i. strong normalization: there is no infinite sequence of reductions

g2t ot— ...

ii. confluence (also called the Church-Rosser or diamond property): if we have for terms t,
t4, to thatt —» ty and t —» t5, then we can find a term {5 such that ty —» t3 and t, —» t5 (i.e.
we can complete the diamond in fig. 2).

Usually, we are only interested in these properties for closed (or ground) terms, and then
we talk about ground normalization and ground confluence.

In order to prove confluence for a TRS, we need to look at all so-called critical pairs, i.e. the
left-hand sides of two reduction rules that have overlap and thus can be applied to the same

term.
1
1 t
\ %
\ /
X\
A /
3
FIGURE 2.
1.4.6 THEOREM

Let (X,R) be a TRS. If {(},R) is strongly normalizing and confluent, then every term has a
unique normal form. If (¥,R) is ground normalizing and ground confluent, then every closed
term has a unique normal form.

1.4.7 NOTE

We can always turn a TRS into an equational specification, by replacing every — in the
reduction rules by the symbol =. If the TRS is strongly normalizing and confluent, that gives us
a decision procedure to find out if two terms are equal in the resulting specification: reduce both
terms to normal form; if they are identical, then the terms are equal, if they are not, then the
terms are not equal. In this way we obtain an operational (i.e. executable) notion of derivability
in a specification. Unfortunately, we cannot give such an operational notion for every
specification, since equality is not always decidable.

1.4.8 EXERCISES
1. Prove for the TRS in table 4 that

Term rewriting systems 13

m(a(s(s(0)).s(0)),s(s(0))) —» s(s(s(s(s(s(0)))))).
2. Prove that the closed normal forms for the TRS in table 4 are the terms of the form s"(0)
(with n20).
3. We consider a TRS with a unary function —, and binary functions A, v. The reduction rules
are given in table 5 (in infix notation, leaving out many brackets).

—X X
—(XVYy) > =X Ay
AXAY) D =X vy
XVyAZ) o> (Xvy)a(xv2)
XAY)VZo{XxvZ)alyvz)
TABLE 5.

Reduce the term —(X A Yy} A Z to normal form. (Note: the normal forms of this TRS are
known in propositional logic as conjunctive normal forms.)
4. Prove that the TRS with the one rule
f(f(x)) — f(g(f(x)))
is strongly normalizing.
5. Is the TRS with the one rule
flg(x,y)) — g(g(f(f(x)).y).y)

strongly normalizing?

