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Homotopy fixed points
in the algebraic K-theory of
certain infinite discrete groups

Gunnar Carlsson*

1 Introduction

Since their introduction 15 years ago, Quillen’s algebraic K-groups of
rings have remained fairly difficult to compute in most cases of interest. This paper
is a brief sketch of an attempt to remedy this situation in the case of group rings
of certain discrete groups. Group rings are of particular interest since the algebraic
K-groups are in this case related to the geometry of manifolds with the given group
as fundamental group. Specifically, the algebraic K-groups of Z(m; M) are involved
in the description of the space of self-homeomorphisms of M.

Recall that the zero-th space of Quillen’s K -theory spectrum associated to a ring
A is the space BGLT(A) [7]. One obvious map into the space BGL+(ZF) arises from
the existence of a tensor product map BGL,(A)x BGL,(B) %, BGL,.m(A®c B),
where A and B are C-algebras, as follows. We note that the group T is contained in
the group GL;(ZT), as one-by-one matrices with entry the given element of I'. Thus,
we have a map I' x GL,Z N GL,IT. Applying the classifying space functor and
passing to the limit over n we obtain a map BI' x BGL*Z — BGL*(IT). After
suitable interpretation, one finds that this map can be delooped so as to obtain a
map of spectra BI'y A KZ =, KIT', where K denotes the K-theory spectrum, and
« is called the assembly map. In many cases, one conjectures that the map is a split
injection onto a wedge summand, or perhaps that it is an equivalence. Much work has
been done in this direction.

(a) Waldhausen [10] showed the map to be an equivalence in many cases, and
analysed the failure of the map to be an equivalence in many others. He studied groups
constructed from infinite cyclic ones by amalgamated sum and Laurent extension
procedures.

(b) Quinn showed that if ' is the fundamental group of a flat manifold, then the

assembly map is an equivalence after rationalization [8].
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6 G. Carlsson

{c¢) The L-theory analogue of the conjecture that « is injective on a wedge summand
is a strong form of the Novikov conjecture. The actual Novikov conjecture is that «
is an injection after rationalization. The K -theory version has been proved for groups

with finitely generated homology by Bokstedt, Hsiang, and Madsen.

{(d) The A-theory analogue of « has been studied with spectacular success by Farrell
and Jones [5]. A-theory means Waldhausen’s K-theory of the spaces applied to BT.
Farrell and Jones completely describe A(BT'), when T is the fundamental group of a
negatively curved manifold. A corollary of their work is that the ordinary K-theory

assembly map is an equivalence after rationalization for these groups.

2 A homotopy-theoretic approach

We’ll describe an approach to this problem fundamentally different from
those used in the above pieces of work. To motivate the procedures, we’ll consider first
the case of the complex group ring of a finite group. Here, Atiyah [1] and Atiyah-Segal
[2] observed that the K-theory spectrum could be viewed as the fixed point spectrum
of the group G acting on a G-equivariant spectrum having the homotopy type of KC,
which we shall call Kg(C). The zero-th space of Kg(C) is the space BU, equipped
with an action arising from all complex representations of G. Now BUY = [] ,BU,
where p ranges over all virtual representations of G. Atiyah [1] went on to show that
if we consider the map BU® — BU"Y, where BU®C denotes the homotopy fixed
point set, we often detect the entire space BUY, and hence the K-theory spectrum
of C[G]. See [3] for a discussion of homotopy fixed point sets. Specifically, if G is a
p-group Atiyah showed that the map BUY — BU"C is an equivalence after p-adic
completion. This suggests that we attempt to mimic this procedure, even in the case of
infinite groups. We arrive immediately at a problem, since a key point in the Atiyah-
Segal program was that G acted on finite matrices. When we naively generalize
this part of the program, we find that ZI' is indeed realizable as the fixed point
subring of an action of I' on a ring of matrices, but that the matrices are necessarily
infinite. It is easy to show that when one considers the ring of all infinite matrices with
entries in Z, whose rows and columns are finite, the associated K -theory spectrum is
contractible, and hence so is its homotopy fixed point set. Further, the natural guess
for a spectral sequence converging to K,ZT' would have E}?-term H~P(T; K,Z), and
many negative-dimensional groups would arise. The second observation shows that
this kind of naive approach will not lead very far.

Our new approach can be summarized as follows. Roughly speaking, instead of
considering all finite matrices, one should consider an appropriately chosen subring.
In the case of T = 7, one will consider a subring of the ring of all endomorphisms of

the free Z-module with basis {€,}32 _ . The subring in question consists of all those
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matrices M for which there is a number N(M) so that M;; = 0 if |t — j| > N(M).
Here, M;; denotes the matrix entry associated to ¢ and j. This subring will be called
the ring of bounded endomorphisms of the given module, and will be denoted by B.
Now, I' acts on the basis {e,} by e, = en+1, where o is a generator for I'. This
action gives a conjugation action on B, and the fixed point subring is Z(T"). The
important point is that the K-theory of B is not trivial, but in fact K;(B) = K;_,(Z),
and KB = $KZ. When we take the homotopy fixed point set KB"T, we find that
KB =~ K7 v LKZ, which is known to be the correct answer for KZ(T') from the
localization sequence and homotopy axiom for algebraic K-theory [7]. This suggests
very strongly that we are on the right track, and should attempt to find a suitable
replacement for B for a more general class of groups. The suitable framework is the
bounded algebraic K-theory of E. Pedersen and C. Weibel [6]. They associate to any
metric space X and ring R a spectrum K(R; X), the K-theory of R with labels in
X. This is done as follows. To R and X, we first associate a category Cx{R), whose
objects are free R-modules equipped with a basis B = {eq}qea and a “labelling”
function ¢: B — X. The modules may be infinitely generated. A morphism from
{M,Bp,¢m} to {N,Bn,pn} is an R-linear isomorphism f which is bounded in the
following sense. Given a linear transformation T: M — N, let {Tog}laeBy,seBy be
the matrix of T relative to the bases Bys and By. Then f is said to be bounded if
there is a number L so that fog = 0 = (f~1)g4 if d(@p(@),on(B)) > L. The category
Cx(R) is symmetric monoidal, and so is its “idempotent completion” C. x{R). To any
symmetric monoidal category A one associates a spectrum, as in [9], called Spt.A.
Now K(R, X) is defined to be Spt(Cx(R)).

Pedersen and Weibel proceed to prove several results about their construction. For
instance, if E™ denotes R™ with its standard Euclidean structure, then K(R; E™)g isan
n-fold delooping of K(R)e. The subscript “0” denotes zero-th space. These deloopings
are not in general connective; in fact, they are equivalent to the so-called Gersten-
Wagner deloopings of K(R);. Also, they show that if X € S"!, and CX C E™ is
the open cone on X, with induced metric, then K{(R; CX) 2 X A E’R, where JE’R is
the spectrum whose nth space is K(R; E™)q. Finally, it is clear from the construction
that if X is a bounded metric space, then K(R; X) = Z\’(R)

Our generalization of the above construction for I' = Z now goes as follows. If
the metric space X is acted on isometrically by a group I', then there is a spec-
trum ISP(R; X), with T'-action, so that K .(R; X) & K(R; X) non-equivariantly. One
can show that if the T-action is free, and if X/I' is bounded, then E’F(R;X)F =
K(RI; X/T') & K(RI"). There is an evident induced metric on X/T', which is the
one we use. We have now achieved our goal of constructing a spectrum with I'-action
whose fixed point spectrum is the K-theory spectrum of RT', if we can find the correct

metric space.
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Now suppose that I' = m; X, where X is a compact closed manifold. If we equip
X with a Riemannian metric, X becomes a bounded metric space. Of course, the
Riemannian metric pulls back to the universal cover X , where it is invariant by the
action of I' by deck transformations. Thus Xisa good choice of metric space with free
T-action. If X were actually flat, then X = E", and we would understand K(R; E™)
from the work of Pedersen and Weibel. In particular, we would find that we have
a spectral sequence with E3Y = HP(T, K,_,Z) converging to K.(Z; E™RT | If we
examine the spectral sequence, we find that the groups which appear are precisely
those which appear in a similar spectral sequence for m,(BTy A KZ), because of
Poincaré duality in H*(T';Z). One can make a precise argument which shows that
in fact K.(Z; E")*" = BTy A KZ, and that the composite BT A KZ — K(IT) —
K (Z; E™)*T is an equivalence, allowing us to conclude that a is the inclusion of a
wedge factor.

Suppose now I' = 7 X, where X is closed, compact, and X=R" I general,
the metric will not be flat, and we are unable to use the Pedersen-Weibel results.
One can hope, however, to use Mayer-Vietoris techniques to understand L{(R;X ) in
certain situations. In fact, Pédersen and Weibel used a Mayer-Vietoris sequence in
proving their result for Euclidean space. One could ask, then, if a metric space X is
decomposed as a union X =Y U Z, does one have a cofibre sequence

K(R;Y N 2) — KR;Y)V K(R; Z) — KB X)?

In general, this fails as one can see from the following picture in the plane E2.

The subset X is equipped with the induced distance function (not the induced
Riemannian metric) from E?. Of C(;urse, X is homeomorphic to the real line, and
X = X; UX_. One shows easily that K(R; X;) & * = K(R; X_), and of course
K(R; Xy N X_) = K(R). Thus, if there were a Mayer-Vietoris sequence, we would
have a cofibre sequence
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KR X, N X_) — K(R; X+) Vv K(R; X_) — K(R; X),

and hence that K(R; X) = TK(R; X4y N X_). On the other hand, it is easy to see
that projection on the y-axis induces an equivalence K(R; X) — K(R;Ry), where R
denotes the positive y-axis. Pedersen and Weibel have shown this latter space to be
contractible, so the sequence cannot be correct as it stands.

Fortunately, it is not too difficult to remedy this situation. If U is a subset of a
metric space X, and r is a number, then let N, U = {z € X |Ju € U with d(z,u) <r}.

Then it turns out that one can construct a Mayer-Vietoris cofibration sequence

lim K{R; N,UN N, V) — lim K(R;N,U) V lim K(R; N,V)
T r r

— K(R; X),
when U UV = X. Using this Mayer-Vietoris sequence, one can now proceed as
follows to produce a target for a map out from K{(R;X). Let & = {Us}aeca be any
finite covering of X. We define a simplicial complex B(U) by letting the vertices of

B(U) be in 1-1 correspondence with A4, so V(8(U)) = {vq}aea, and declaring that

{Vo11Vays- - Va, } spans a simplex if and only if there is a number r so that the subset
NUq, O N Uqg, N -+ NN U,, € X is unbounded. The existence of the above Mayer-
T(U)

Vietoris sequence permits the construction of a map K(R; X) — ZB(U) A K(R).
After some technical work, one obtains a map 7: K(R; X) — ho%lim pU) N K(R),
the homotopy inverse limit over a category of coverings. In fact, this category may be
taken to be directed, and the resulting prospectrum is often rather easy to understand.

One can now use slight elaborations of the above ideas to prove that if I' = m; X,
where X is closed, compact, and admits a metric of non-positive curvature, then
a: BTy AKZ — KIT isinjective onto a summand. The elaboration consists of building
the correct I'-equivariant version of the map 7. The important fact derived from the
curvature condition is that two distinct geodesics emanating from the same point grow
infinitely far apart. In outline, the proof goes as follows. One constructs a so-called
locally-finite homology spectrum of X with coefficients in K7, hlf()N( ; KZ), which has
the following properties.

(a) hu(X; K2)¥ = KZ A BT

(b) ae(X; KM == hue(X; KT)Ts

() hlf(:Xv.;KZ) = S*" AKZ, where n = dim X ;

(d) there exists a map @: h“()?; K7) — K(Z; )?), so that the induced map on fixed
points is the assembly map «;

(e) the map hu(f; K7) — K(Z, )?) is onto a I'-equivariantly split summand.

It is in proving part (e) that one uses the map 7 above. The curvature condition

allows one to choose coverings judiciously, so as to prove (e).
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3 Concluding Remarks
(i) One can attack the question of whether « is in fact an equivalence

by these methods as well. One must show that the map K(ZT") — K(Z; jf)hr is also
split injective. This one can do by studying the bounded K-theory of the universal
covering space of the stable normal bundle to X. One must also compute precisely
K(Z, X }. The precise results one obtains will appear in due course [4].

(ii) The condition that the manifold be closed should be removable in many cases.
In particular, I expect that results will be obtained for arithmetic groups.

(i11) The method is not restricted to fundamental groups of manifolds. In particular,
the so-called Bruhat-Tits buildings are metric spaces which are not manifolds. The
computation of their bounded K-theory should give results on cocompact discrete

subgroups over p-adic fields, and S-arithmetic groups.
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