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Introduction

A systematic interest in recombination in semiconductors dates roughly from 1950
and gave rise for example to the Shockley—Read-Hall statistics in 1952 and the
application of detailed balance to radiative processes in semiconductors in 1954,
But our story really started with quantum mechanics and its application to solids.
In contrast to its junior cousin, the black hole, the hole of semiconductor physics
was first seen experimentally (in the anomalous Hall effect) and quantum
mechanics was used to elucidate it [1]. Quantum mechanics was also used later to
propose the band model of a semiconductor [2]. Actually, the copper oxide plate
rectifier had been a useful solid-state device since the early days of quantum
mechanics in the 1920s, but its action came to be understood only just before the
war using electrons, holes and the band model [3]. This work has been reviewed for
example by Mott and Gurney [4] and by Henisch {5]. Solid-state electronics was
already in the air then, and rudimentary solid-state amplification had been
proposed by Lilienfeld [6] in the late 1920s and established by Hilsch and Pohl [7]
in 1938, using potassium bromide crystals. A useful semiconductor ‘triode’ was
clearly ready to be born in 1938/9. But the war intervened. Still, solid-state
detection was now important for radar, and programs to study silicon and
germanium were initiated partly with government funding, notably at Purdue
University under K. Lark-Horovitz. At the end of the war one could claim that
what Shockley called ‘one-current theories’ of metal-semiconductor rectification
[8] were in reasonable shape, apart from a little tinkering here and there, for
example, by the present author (see [5]). Of course, the study of surfaces was then,
and continues to be, a very active area of research.

The two-current theories, and with them recombination, came a few years after
the war when in 1947 Bardeen and Brattain discovered the point contact transistor
along with minority carrier injection [9]. Electron—hole pair generation was also
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2 Introduction

studied and was rather like another cousin, this time a senior one, namely
electron—positron pair creation. (This requires energy 2m, ¢ which corresponds in
the solid state to E; = 2E, = 2m}v*?, where E, is the energy gap, E, is the
nonparabolicity parameter (1.6.16) and v is a saturation velocity (1.6.31) which
indeed corresponds to ¢.) The junction transistor followed, and was discussed by
Shockley in a post-deadline paper at an international conference held in Reading,
England, in July 1950 [10]. (It did not appear in the proceedings [11].)

Other developments followed, as is well known: the onward march of silicon,
many new devices, including solar cells which enabled space exploration to pro-
ceed, GaAs and other III-V compounds, integrated circuits, microminiaturization,
ever faster and more compact computers, etc. With vacuum microelectronics the
wheel may come full circle. The story is well outlined elsewhere ([12]-{14]).

If we fasten our attention on the year 1950 for the systematic beginning of our
subject, we can think of the Reading Conference of July 1950 as the appropriate
event. Indeed, seven of the people mentioned above were present, as is clear from
the group photograph given as the Frontispiece. (Additions and corrections to the
identifications are needed and will be welcomed.) It is a historical document,
particularly since the Reading Conference came to be regarded as the first of a
series of international conferences on the physics of semiconductors which runs as
follows: (2) Amsterdam, 1954; (3) Garmisch, 1956; (4) Rochester, 1958; (5)
Prague, 1960; (6) Exeter, 1962; (7) Paris, 1964; (8) Kyoto, 1966; (9) Moscow,
1968; (10) Cambridge USA, 1970; (11) Warsaw, 1972; (12) Stuttgart, 1974; (13)
Rome, 1976; (14) Edinburgh, 1978; (15) Kyoto, 1980; (16) Montpellier, 1982; (17)
San Francisco, 1984 ; (18) Stockholm, 1986; (19) Warsaw, 1988 (20) Thessaloniki,
1990. If someone exists who attended them all, he should be given a medal for
devotion to the subject, longevity, and willingness to travel.

This book, then, is devoted to the main aspects of the physics of recombination
in semiconductors, omitting related topics that are well covered elsewhere, such as
band theory, resonances, details of phonon effects, and amorphous systems. The
concepts are introduced so that graduate students who are beginning research can
follow the argument. Some things may look complicated, but they are explained,
so that some of the work (chapter 1, sections 2.1 to 2.3, and the beginnings of
chapters 3 and 4) can be studied already in an undergraduate course. My idea was
to make the book almost completely self-contained with an emphasis on general
principles. This should enable a reader to make new applications while it will also
detach the book a little from the precise contemporary state of research, so that,
with luck, it will not go out of date too quickly. In a first study of the book the
portions in small print can be omitted. A short guide to the book is given at the
end of this Introduction.
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It will be seen that an attempt to cover the main topics in the recombination area
has been made. However, not all relevant subjects could be discussed, and I regret
the disappointment this may cause some readers. In general, these omissions are
due to my lack of competence in these areas, coupled with the need to keep the
book from becoming too long. The knowledgeable reader will, perhaps, be
recompensed by finding relatively new material already early in the book and in
unexpected places.

Imbedded in chapters 1 and 2 is the material for a possible slim volume called
The Partition Function Approach to Semiconductor Kinetics. For, on looking
through this book, it became clear to me that this rather useful tool, largely
developed and used by my collaborators and myself over the last decades, is not
as widely known as it should be. Perhaps it has not been popularized with sufficient
skill. Hence, the possibility of the above mentioned slim volume. This is no ‘plug’
for an (unwritten) book. On the contrary, the careful reader of the present book will
already know all there is to be taught by me, and therefore will not need to have
it, should it ever materialize.

I have tried to give an indication of current thought with regard to most topics,
but at the same time I wanted to preserve a sense of the historical development of
our subject. For example the paper [1.8.10] by Debye and Conwell (1954) is not
often cited now, but it was very influential at the time. I have also cited papers
which, while good and relevant, have had a rather low citation count, thus
helping to ‘save’ them for possible future work —[5.2.57] is an example. Thus
many papers are cited. This is done by number (for example [1.8.10] is reference
10 in section 1.8), for which I apologize, but it has saved much space, as many
papers have three authors and some have more, and it has helped to keep the
continuity of argument.

For help with the identification of the persons in the frontispiece I thank Dr P.C.
Banbury (Reading), Dr R.N. Bloomer (Locksheath, Southampton), Prof. G.
Busch (Ziirich), Prof. H.K. Henisch (State College, Pa.), Sir George MacFarlane
(Esher, UK), Dr T.S. Moss (Malvern, UK), and Dr A.J. Vink (V.D. Waalre, The
Netherlands).

It is a pleasure to thank several colleagues for comments on part of the
manuscript, notably Dr R.A. Abram (Durham), Prof. M. Jaros (Newcastle), Dr
Jerzy M. Langer (Warsaw), Dr T. Markvart (Southampton), Dr D. J. Robbins,
Dr R.I. Taylor (Plessey Research Laboratories)* and Leendert Verhoef (Amster-
dam). Dr Markvart kindly wrote chapter 6, and Dr Taylor wrote chapter 7, and
I am indebted to them for these important contributions. R.I. Taylor acknowledges
tenure of an SERC CASE studentship in collaboration with British Telecom

* Now GEC-Marconi Materials Technology Ltd.
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A short guide to the contents of this book

References are to sections unless stated otherwise.

Band-band

Band—trap

Statistics

Radiative processes

Nonradiative processes

Mixture of above

\

[ Radiative emission:

k

Statistics involving recombination coefficients:

( Figs 2.1.1, 2.1.2

Statistics for combining recombination channels:

224,237

Surface recombination and grain boundary

barrier heights: 2.7

Recombination at dislocations: 2.8
Recombination—generation induced phase

transitions and chaos: 4.6

Recombination-enhanced reactions 5.4.4

Reaction constants:
1.11.1

Quantum efficiency in an
intrinsic semiconductor:
2.1.3

44,45
Radiative absorption: 4.5

Impact ionization
thresholds: 3.5

Impact ionization and
Auger probabilities: 3.7

Auger lifetimes: 3.8

Reaction constants: 1.11.2

Statistics for trap
spectra: 2.3.6

Cascade recombination
kinetics: 2.4.2

Capture and emission
coefficients: 2.4.6

Their field dependence:
253,254

Thermionic and field
emission: 2.5.5

Geminate recombination:
2.5.6

Cascade capture: 2.6

Radiative recombination:

5.2.1

Photoionization: 5.2.4

Donor-acceptor radiative
transition: 5.2.6

Excitons in radiative
recombination: 5.2.7

Impact ionization and
Auger recombination: 5.3

Auger quenching: 5.3.4

More involved Auger
effects: 5.4

Multiphonon effects:
chapter 6 '

Tunneling: 2.5.5, 2.5.6

Recombination in low-dimensional structures

(chapter 7)
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Research Laboratories during the course of part of the work on chapter 7. R.1.
Taylor would also like to thank Drs R.A. Abram, M.G. Burt and C. Smith for
useful discussions. Thanks are also due to D. Harding (Southampton) for his help
with the index, and to Irene Pizzie for her careful reading of the manuscript.

I am also indebted to the Leverhulme Trust for the award of an emeritus
fellowship; to the Department of Electrical Engineering of the University of
Florida in Gainesville for the opportunity to give some of this material in graduate
courses; and to my home University of Southampton for providing facilities.

It is common for an author to thank his family for suffering his absences during
the writing of his masterpiece. The present case is slightly different. It is my family
who are thanking me for keeping away from under their feet by undertaking the
task, the result of which I have now pleasure to present.



