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CHAPTER 1

Introduction

As regards problems of specification, these are entirely a matter
for the practical statistician, for those cases where the quali-
tative nature of the hypothetical population is known do not
involve any problems of this type.

Sir R. A. Fisher (1922)

A regression curve describes a general relationship between an explana-
tory variable X and a response variable Y. Having observed X, the
average value of Y is given by the regression function. It is of great
interest to have some knowledge about this relation. The form of the
regression function may tell us where higher Y-observations are to be
expected for certain values of X or whether a special sort of dependence
between the two variables is indicated. Interesting special features are,
for instance, monotonicity or unimodality. Other characteristics include
the location of zeros or the size of extrema. Also, quite often the re-
gression curve itself is not the target of interest but rather derivatives
of it or other functionals.

If n data points {(X;,Y;)}”; have been collected, the regression re-
lationship can be modeled as

Y, =m(X;) +¢,, i=1,...,n,

with the unknown regression function m and observation errors ¢;. A
look at a scatter plot of X, versus Y; does not always suffice to establish
an interpretable regression relationship. The eye is sometimes distracted
by extreme points or fuzzy structures. An example is given in Figure 1.1,
a scatter plot of X; = rescaled net income versus Y; = expenditure for
potatoes from the Family Expenditure Survey (1968-1983). The scatter
of points is presented in the form of a sunflower plot (see Cleveland and
McGill, 1984, for construction of sunflower plots).

In this particular situation one is interested in estimating the mean
expenditure as a function of income. The main body of the data covers
only a quarter of the diagram with a bad “signal to ink ratio” (Tufte
1983): it seems therefore to be difficult to determine the average expen-
diture for given income X. The aim of a regression analysis is to produce
a reasonable approximation to the unknown response function m. By

3
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Figure 1.1. Potatoes versus net income. Sunflower plot of ¥ =
expenditure for potatoes versus X = net income of British house-
holds for year 1973, n = 7125. Units are multiples of mean income
and mean expenditure, respectively. The number of petals of the
sunflower indicates the frequency of observations falling in the cell
covered by the sunflower. Family Expenditure Survey (1968-1983).

reducing the observational errors it allows interpretation to concentrate
on important details of the mean dependence of Y on X. This curve
approximation procedure is commonly called “smoothing.”

This task of approximating the mean function can be done essentially
in two ways. The quite often used parametric approach is to assume that
the mean curve m has some prespecified functional form, for example, a
line with unknown slope and intercept. As an alternative one could try to
estimate m nonparametrically without reference to a specific form. The
first approach to analyze a regression relationship is called parametric
since it is assumed that the functional form is fully described by a finite
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set of parameters. A typical example of a parametric model is a polyno-
mial regression equation where the parameters are the coefficients of the
independent variables. A tacit assumption of the parametric approach
though is that the curve can be represented in terms of the parametric
model or that, at least, it is believed that the approximation bias of the
best parametric fit is a negligible quantity. By contrast, nonparametric
modeling of a regression relationship does not project the observed data
into a Procrustean bed of a fixed parametrization, for example, fit a line
to the potato data. A preselected parametric model might be too re-
stricted or too low-dimensional to fit unexpected features, whereas the
nonparametric smoothing approach offers a flexible tool in analyzing
unknown regression relationships.

The term nonparametric thus refers to the flexible functional form of
the regression curve. There are other notions of “nonparametric statis-
tics” which refer mostly to distribution-free methods. In the present
context, however, neither the error distribution nor the functional form
of the mean function is prespecified.

The question of which approach should be taken in data analysis was
a key issue in a bitter fight between Pearson and Fisher in the twenties.
Fisher pointed out that the nonparametric approach gave generally poor
efficiency whereas Pearson was more concerned about the specification
question. Tapia and Thompson (1978) summarize this discussion in the
related setting of density estimation.

Fisher neatly side-stepped the question of what to do in case one did
not know the functional form of the unknown density. He did this by
separating the problem of determining the form of the unknown density
(in Fisher’s terminology, the problem of “specification”) from the prob-
lem of determining the parameters which characterize a specified density
(in Fisher’s terminology, the problem of “estimation”).

Both viewpoints are interesting in their own right. Pearson pointed
out that the price we have to pay for pure parametric fitting is the
possibility of gross misspecification resulting in too high a model bias.
On the other hand, Fisher was concerned about a too pure consideration
of parameter-free models which may result in more variable estimates,
especially for small sample size n.

An example for these two different approaches is given in Figure 1.2,
where the straight line indicates a linear parametric fit (Leser 1963,
eq. 2a) and the other curve is a nonparametric smoothing estimate.
Both curves model the market demand for potatoes as a function of
income from the point cloud presented in Figure 1.1. The linear para-
metric model is unable to represent a decreasing demand for potatoes
as a function of increasing income. The nonparametric smoothing ap-
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Figure 1.2. Potatoes versus net income. A linear parametric fit
of Y = expenditure for potatoes versus X = net income (straight
line) and a nonparametric kernel smoother (bandwidth = 0.4) for
the same variables, year 1973, n = 7125. Units are multiples of
mean income and mean expenditure, respectively. Family Expendi-
ture Survey (1968-1983).

proach suggests here rather an approximate U-shaped regression relation
between income and expenditure for potatoes. Of course, to make this
graphical way of assessing features more precise we need to know how
much variability we have to expect when using the nonparametric ap-
proach. This is discussed in Chapter 4. Another approach could be to
combine the advantages of both methods in a semiparametric mixture.
This line of thought is discussed in Chapters 9 and 10.

1.1 Motivation

The nonparametric approach to estimating a regression curve has four
main purposes. First, it provides a versatile method of exploring a gen-
eral relationship between two variables. Second, it gives predictions of
observations yet to be made without reference to a fixed parametric
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model. Third, it provides a tool for finding spurious observations by
studying the influence of isolated points. Fourth, it constitutes a flexi-
ble method of substituting for missing values or interpolating between
adjacent X-values.

The flexibility of the method is extremely helpful in a preliminary
and exploratory statistical analysis of a data set. If no a priori model
information about the regression curve is available, the nonparametric
analysis could help in suggesting simple parametric formulations of the
regression relationship. An example is depicted in Figure 1.3. In that
study of human longitudinal growth curves the target of interest was the
first (respectively, second) derivative of the regression function (Gasser
et al. 1984; Jorgensen et al. 1985).

The nonparametric regression smoothing method revealed an extra
peak in the first derivative, the so-called mid-growth spurt at the age
of about eight years. Other approaches based on ad hoc parametric
modeling made it extremely difficult to detect this extra peak (dashed
line Figure 1.3).

An analogous situation in the related field of density estimation was
reported by Hildenbrand (1986) for the income density income of British
households. It is important in economic theory, especially in demand
and equilibrium theory, to have good approximations to income dis-
tributions. A traditional parametric fit — the Singh-Madalla model —
resulted in Figure 1.4.

The parametric model class of Singh-Madalla densities can only pro-
duce unimodal densities per se. By contrast, the more flexible non-
parametric smoothing method produced Figure 1.5. The nonparametric
approach makes it possible to estimate functions of greater complexity
and suggests instead a bimodal income distribution. This bimodality
is present over the thirteen years from 1968 to 1981 and changes its
shape: More people enter the “lower income range” and the “middle
class” peak becomes less dominant.

An example which once more underlines this flexibility of modeling
regression curves is presented in Engle et al. (1986). They consider a
nonlinear relationship between electricity sales and temperature using a
parametric-nonparametric estimation procedure. Figure 1.6 shows the
result of a spline smoothing procedure that nicely models a kink in the
electricity sales.

Another example arises in modeling alcohol concentration curves. A
commonly used practice in forensic medicine is to approximate ethanol
reduction curves with parametric models. More specifically, a linear re-
gression model is used which in a simple way gives the so-called Beo
value, the ethanol reduction rate per hour. In practice, of course, this
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AGE IN YERRS

Figure 1.3. Human height growth versus age. The small graph gives
raw data of height connected by straight lines (solid line) with cross-
sectional sample quantiles (dashed lines). Velocity of height growth of
a girl (above) and acceleration (below) modeled by a nonparametric
smoother (solid line) and a parametric fit (dashed line). Units are cm
(for height), cm/year (for velocity) and cm/year? (for acceleration).
From Gasser and Miiller (1984 figure 1) with the permission of the
Scandinavian Journal of Statistics.

model can be used only in a very limited time interval; an extension
into the “late ethanol reduction region” would not be possible. A non-
parametric analysis based on splines suggested a mixture of a linear and
exponential reduction curve. (Mattern et al. 1983).

The prediction of new observations is of particular interest in time
series analysis. It has been observed by a number of people that in cer-
tain applications classical parametric models are too restrictive to give
reasonable explanations of observed phenomena. The nonparametric
prediction of times series has been investigated by Robinson (1983) and
Doukhan and Ghindes (1985). Ullah (1987) applies kernel smoothing to
a time series of stock market prices and estimates certain risk indexes.
Deaton (1988) uses smoothing methods to examine demand patterns
in Thailand and investigates how knowledge of those patterns affects
the assessment of pricing policies. Yakowitz (1985b) applies smoothing
techniques for one-day-ahead prediction of river flow. Figure 1.7 be-
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Figure 1.4. Net income densities over time. A Singh-Madalla fit to
the densities of X = net income from 1969 to 1983. Units are mean
income for each year. Family Expenditure Survey (1968-1983).
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Figure 1.5. Net income densities over time. A nonparametric kernel
fit (bandwidth h = 0.2) to the densities of X = net income from 1969
to 1981. Units are mean income for each year. Family Expenditure
Survey (1968-1983).
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Figure 1.8. Indicators of fatal injury (Y = 1) as a function of an
injury stress index together with an estimate of the regression curve.
From Hardle and Scott (1988).

low shows a nonparametric estimate of the flow probability for the St.
Mary’s river.

A treatment of outliers is an important step in highlighting features of
a data set. Extreme points affect the scale of plots so that the structure
of the main body of the data can become invisible. There is a rich liter-
ature on robust parametric methods in which different kinds of outlier
influence are discussed. There are a number of diagnostic techniques
for parametric models which can usually cope with outliers. However,
with some parametric models one may not even be able to diagnose an
implausible value since the parameters could be completely distorted by
the outliers. This is true in particular for isolated (leverage) points in
the predictor variable X. An example is given in Rousseouw and Yohai
(1984) in which a linear regression line fitted a few outliers but missed the
main body of the data. Nonparametric smoothing provides a versatile
pre-screening method for outliers in the z-direction without reference to
a specific parametric model. Figure 1.8 shows a nonparametric smoother
applied to analysis of simulated side impact studies. The curve shown
is an approximation to the probability of a fatal injury as a function of
anthropometric and biokinetic parameters. The Y-ordinates are binary
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in this case (Y = 1 denoting fatal injury). The curve shows visually
what could also be derived from an influence analysis: it makes a dip at
the isolated z-points in the far right. The points could be identified as
observations from young persons which had a rather unnormal reaction
behavior in these experiments; see Kallieris and Mattern (1984). This
example is discussed in more detail in Section 10.4.

Missing data is a problem quite often encountered in practice. Some
response variables may not have been recorded since an instrument broke
down or a certain entry on an inquiry form was not answered. Nonpara-
metric smoothing bridges the gap of missing data by interpolating be-
tween adjacent data points, whereas parametric models would involve all
the observations in the interpolation. An approach in spatial statistics
is to interpolate points by the “kriging” method. This method is used
by statisticians in hydrology, mining, and petroleum engineering and is
related to predicting values of noisy data in a nonparametric fashion;
see Yakowitz and Szidarovszky (1986). Schmerling and Peil (1985) use
local polynomial interpolation in anatomy to extrapolate missing data.

1.2 Scope of this book

This book takes the viewpoint of an applied statistician who is interested
in a flexible regression analysis of exploratory character. In this spirit, I
shall concentrate on simple smoothing techniques and analyze problems
that typically arise in applications. Important practical questions are:

What is the right amount of smoothing?
How close is the estimated curve to the underlying curve?

How can we effectively estimate curves in dimensions higher
than three?

One of the simplest smoothing techniques is kernel estimation. It is
straightforward to implement without further mathematical knowledge
and it is understandable on an intuitive level. It is argued in Chapter
2 that kernel smoothing is a suitable tool in many ways. A variety of
alternative smoothing techniques such as splines are discussed as well.
In Chapter 3 it is seen that they are, in an asymptotic sense, equivalent
to kernel smoothing.

The decision about the right amount of smoothing is crucial. Every
smoothing method has to be tuned by some smoothing parameter which
balances the degree of fidelity to the data against the smoothness of
the estimated curve. A choice of the smoothing parameter has to be
made in practice and controls the performance of the estimators. This
smoothing parameter selection problem will be discussed in great detail
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and will be a centerpiece of this book (Chapters 4 and 5). The user
of a nonparametric smoothing technique should be aware that the final
decision about an estimated regression curve is partly subjective since
even asymptotically optimal smoothers contain a considerable amount
of noise that leaves space for subjective judgment. It is therefore of great
importance to make such a decision in interaction with the data, which
means that ideally one should have computer resources with some sort
of interactive graphical display. Bearing this in mind, a great deal of
the discussion will be devoted to algorithmic aspects of nonparametric
smoothing.

In Chapters 6 and 7 I discuss smoothing in the presence of outliers
and correlation, respectively. In Chapter 8 smoothing under qualitative
constraints, such as monotonicity or more general piecewise monotonic-
ity, is presented. Smoothing in dimensions higher than three creates
problems on the computational and on the statistical side of the esti-
mator. It takes longer to compute the estimators and the accuracy de-
creases exponentially as the dimension grows. Chapter 9 presents some
semiparametric approaches to incorporate parametric components into
nonparametric smoothing. Chapter 10 discusses additive models and
gives some heuristics as to why these models achieve better accuracy
and in this sense reduce the dimension problem.

The great flexibility of nonparametric curve estimation makes a pre-
cise theoretical description of the accuracy of the smoothers for finite
sample sizes extremely difficult. It is therefore necessary to achieve some
sort of simplification. This is done here in two ways. First, the mathe-
matical arguments are of asymptotic character, that is, the accuracy of
the nonparametric smoothing method will be evaluated as the sample
size n tends to infinity. Second, the class of smoothers that is mainly
considered here is of very simple structure (kernel estimators).

The reader interested in the applied aspects should not be too dis-
appointed about the asymptotic mathematical results. I have tried to
present them in the spirit aptly described by Murray Rosenblatt:

The arguments ... have been of an asymptotic character and it is a
mistake to take them too literally from a finite sample point of view. But
even asymptotic arguments if used and interpreted with care can yield
meaningful ideas.

Technical details of the mathematical theory are kept simple or else de-
ferred to exercises and complements. I believe that each chapter provides
stimulation to work out some of the mathematical arguments. Some
practically oriented readers might find themselves encouraged to try the
methods in practice. This can be done, for instance, with graphically
oriented computing environments and systems such as GAUSS (1987),
ISP (1987), S (1988) or XploRe (1989).



