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1
Preliminaries

In this chapter we introduce certain basic general facts from approximation
theory. These will be used in later chapters. The topics we touch upon are the
classic problems of approximation theory, namely existence, characterization,
uniqueness, and continuity of the best approximation operator. We assume
that most of these results are familiar to the reader, for they are contained,
in one form or another, in various introductory texts on approximation the-
ory. For the sake of completeness, at the very least, we also include most of
their proofs. Most readers should skim the contents of this chapter simply to
familiarize themselves with the notation and certain definitions.

1. Existence

We first fix some notation. X will always denote a normed linear space over
the reals JR. A subset ¥ of X is given. QOur problem is to approximate
elements f € X from elements of Y. The ‘error’ in this problem we denote by

E(f;Y)=inf{||f -gl:9€Y}

The subset Y of X is said to be an existence set for X (often termed a
proziminal set) if to each f € X there exists a g* € Y for which

Nf =gl <If gl

for all g € Y, i.e., for each f € X the above infimum is attained. Such g¢* (if
they exist) are called best approrimants to f from Y.
Much is known concerning existence sets. However we shall only review

some very elementary results.

Theorem 1.1. Let Y be a compact subset of X. ThenY is an existence set
for X.

Proof. Let f € X and
E=E(f;Y)=inf{{f -gll: g€ Y}

From the definition of E, there exists a sequence {g.}, g» € Y, with the
property that im, o [|f — gnll = E.

Since Y is compact, there exists a subsequence {g,, } of {gn} which con-
verges to a g* € Y, i.e., limg_,o0 [|gn, — ¢*|| = 0. Now, for every £,

If = g* < UIf = gnill + llgn, — 57II-
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The left-hand-side of the inequality is independent of k. Let k& — oo. The
first term on the right-hand-side approaches E, while the second term tends
to zero. Thus

1£ =971l < i 17 = g + g, — 5711 = E.
However ||f — g*|| > E since g* € Y. Hence ||f — ¢*|| = E, and ¢* is a best
approximant to f from Y. o

It is not necessary that ¥ be compact in order for it to be an existence
set.
Theorem 1.2. Let C be a closed subset of a finite-dimensional subspace U
of X. Then C is an existence set for X.

Proof. Let f € X and v € C. When best approximating f from C, it suffices
to consider only those u € C for which
If —ull <IIf —vll = M.
Define
A={u:uel,|f -ul| <M}
Let || f]l = N. Then, for each u € 4,
full <N+ IF —ull SN+ M.

Thus A is a closed, bounded subset of U. Any closed, bounded subset of a
finite-dimensional subspace is compact. From Theorem 1.1, A is an existence
set for X. We therefore have a u* € A for which

If—wl <IIf —ull, allueA.
This in turn implies that
If—w | <If—ull, allueC. o

As a special case of the above theorem we have a classic result which, for
convenience, we now formally state.

Corollary 1.3. Let U be a finite-dimensional subspace of a normed linear
space X. Then U is an existence set for X.

2. Characterization

We present here two types of characterization theorems. The first is based on
the one-sided Gateaux derivatives, while the second is a consequence of the
Hahn-Banach Theorem.

Let f,ge X. If
Lo I +tgll = 7]

t—0 t
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exists, then the limit is said to be the Gateaux derivative of f in the direction
g. Such limits do not necessarily exist. However the one-sided limits always
exist.

Proposition 1.4. Let f,g € X, and set

= U410l =151

On (0, 00),r(t) is a non-decreasing function of t and is bounded below.

Proof. We first prove that r(t) is bounded below on (0, 00). From the triangle
inequality,

If +tgll 2 1F1 = liegll = N £1l = tllgll.

Thus for t € (0,00),7(t) > —|lgll.
It remains to prove that r(¢) is non-decreasing on (0,00). Let 0 < s <
t < 00. Then,

tf + sgll = l1tf + stgll = lIs(f + tg) + (¢ — )f|| < sllf +tgll + (t - s)IIf]-

Thus
tIf + sglt — [1£1D) < s(Ilf +tgll = 1£1D,

whence we obtain r(s) < r(2). o

For f,g € X, set

7+(f,9) = lim

t—0+

If +tgll = I A1
t

On the basis of Proposition 1.4, 7, (f, g) exists for every f,g € X.
Our first characterization theorem now follows.

Theorem 1.5. Let M be a linear subspace of X, and f € X\M. Then
g* € M is a best approximant to f from M if and only if T.(f — g*,9) > 0
forallge M.

Proof. {=). Assume g* is a best approximant to f from M. Since M is a

subspace,
If—g" +tgll 2 If — g"]

for every g € M and t € R. Thus 7. (f — g*,g) > 0, essentially by definition.
(«<). Assume 7,.(f —g*,g) > 0 for all g € M. From Proposition 1.4, r(t) is a
non-decreasing function of ¢ on (0,00). Setting ¢ = 1 and remembering that
M is a linear subspace, we obtain

If=gll=NIf-g"ll 27+(f—g" 9" —g)>0.
Thus ||f — gl > [|f —¢"| for all g € M. o

A totally analogous proof allows us to obtain this next result.
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Theorem 1.6. Let K be a convex subset of X, and assume f € X\K. Then
g~ is a best approximant to f from K if and only if 7 (f —g*,9* —g) > 0 for
allge K.

Heuristically the above technique should be considered as a generalized
perturbation technique. The next set of results, although formally equivalent,
are more in the spirit of separating hyperplanes.

For a normed linear space X over IR, let X* denote the space of contin-
uous (bounded) real-valued linear functionals on X. For h € X*,

Al = sup{|A(F)] : f € X,|Ifll < 1}

defines a norm on X*. With this norm, X* is a Banach space, i.e., is complete.
The Hahn-Banach (Extension) Theorem, in one of its simpler forms, may
be stated as follows.

Theorem 1.7 (Hahn-Banach). Let M be a linear subspace of X. Assume
H is a continuous linear functional on M. There then exists an h € X* for

which
1) h{g) = H(g), allge M

2) liklilx = 11H]]lae-
The subscript on the |}] - ||| in (2) indicates where this norm is taken. In

general it is well understood from the context and is deleted. One consequence

of the above result is:

Proposition 1.8. Let M be a linear subspace of X. Assume f € X, and
E(f;M) (= E) =inf{||f — gl : g € M} >0.
There exists an h € X* satisfying

1) h(g) =0, allge M
2) [[|nlll =1
3) h(f) = E.

Proof. Let L denote the linear span of M and f. Define a continuous linear
functional H on L as follows: Fora € R, g € M,

H(af +g)=aE.

By definition H(g) = 0 for all g € M, and H(f) = E. Furthermore, it is
easily seen that {||H|||L = 1. Now apply Theorem 1.7. =

As a consequence of Proposition 1.8 we have this next main result paral-
leling Theorem 1.5.
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Theorem 1.9. Let M be a linear subspace of X, and f € X\M. Then g*
is a best approximant to f from M if and only if there exists an h € X* for

which
1) h(g)=0, allge M

2) [ljnl]l =1
3h(f-g)=If-g"Il
Proof. Since f € X\M,
=inf{||f — gl : g€ M} > 0.
(=). Assume g* is a best approximant to f from M. Thus ||f — g*|| = E. Let

h be as given by Proposition 1.8. Then (1) and (2) are valid. Furthermore,
from (1) and (3) of Proposition 1.8,

If —g*ll = E = h(f) = h(f = g7).
Thus (3) of this theorem holds.
(«<). Assume that (1), (2) and (3) hold. Let g € M. Then,
If =gl =h(f—g")=h(f—g) < lIMlll- IIf —gll = |If — gl
Thus g* is a best approximant to f from M. a

Remark. Note that g is any other best approximant to f from M if and only
if h(f —g) = ||f — 7]l for the h satisfying (1), (2} and (3) of Theorem 1.9.

To obtain a result parallel to Theorem 1.6, we use the following general-
ization of the Hahn-Banach Theorem.

Theorem 1.10 (Basic Separation Theorem). Let A and B be disjoint convex
subsets of X. Assume A has interior. There exists a non-zero h € X* and
c € IR such that h(f) > c for all f € A, and h(f) <c for all f € B.

This next result also generalizes Theorem 1.9.

Theorem 1.11. Let K be a convex subset of X, and assume f € X\K. Then
g* is a best approximant to f from K if and only if there exists an h € X*

satisfying
1) h(g*) =2 h(g), allg € K

2) llirlll =1
JMf-g) =l -9l
Proof. (=). Assume
If —g*ll =inf{l|lf —gl: g€ K} =E>0.

Let A= {fo: fo € X,||f — fol]l < E}. Thesets A and K satisfy the conditions
of Theorem 1.10. As such there exists an h € X*,h # 0, and a ¢ € R for
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which h(fo) > ¢ for all fo € A and h(g) < © for all ¢ € K. By continuity,
R(fo) > € for all fo € A, and therefore h(g*) = 2.

Translating by &, there exists a ¢ € R (c = h(f) — ¢) with the property
that h(f — fo) < cforall fo € 4, and h(f —g) > c for all g € K. Since A is a
ball of positive radius about f, we necessarily have ¢ > 0. Set h = (E/ c)i~1. It
is now easily checked that h satisfies (1), (2) and (3).

(«). Assume (1), (2) and (3) hold for some h € X* and g* € K. Then, for
any g € K,

I —g*ll =h(f —g") <h(f —g) < IAIIL-If = gll = IIf ~ g,
and g* is a best approximant to f from K. o

If K is a convex cone, i.e., g € K implies ag € K for all & > 0, then
Theorem 1.11 can be somewhat sharpened.

Corollary 1.12. Let K be a convex cone in X. Assume that f € X\K. Then

g* is a best approximant to f from K if and only if there exists an h € X*

satisfying
1)0 = h(g") > h(g), all g € K

2) [l[plll =1
N h(f-g")=If -9,

or, equivalently,
Y0 > h(g), allge K

2) [kl =1
) R(F) =1If -9l

3. Uniqueness and Strong Uniqueness
Let Y be a subset of X. For each f € X, set

Py(f)={g":9" €Y, |[f-g"l = E(f;Y)}.

Py (f) is the subset of Y containing all the best approximants to f from Y.
Py (f) may, of course, be the empty set. Py (f) is not the empty set for every
f € X if and only if Y is an existence set for X. In general Py is a set-valued
map from X onto Y. Py is referred to as the metric projection onto Y. We are
naturally interested in the various general properties enjoyed by Py. These
depend on both ¥ and X. Convexity is one geometric property which the
metric projection inherits directly from Y.

Proposition 1.13. If K is convex, then Px(f) is convex for each f € X.

Proof. Assume f € X and Pk(f) contains at least two distinct elements g;
and ga. Then E(f;K) = E = ||f — gill, i = 1,2. For each X € [0,1], set
gr = Ag1 + (1 — A)ga. Then

If =l A =gl + A= N)|f — goll = E.
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Since K is convex, gy € K, and ||f — gall > E. Thus ||f — gl = E and, by
definition, g\ € Px(f). o

We continue to assume that K is a convex subset of X. For each f €
X, Pk (f) may be the empty set, a unique element of K, or a convex subset of
K containing more than one element. In certain cases, simple norm properties
eliminate this third option, i.e., Px(f) will contain at most one element.

Definition 1.1. The normed linear space X is said to be strictly convex if, for
any f,g € X satisfying f # g and ||f]| = ||g]] = 1, we have [Af+(1—-X)g|l < 1
for every X\ € (0,1).

The above definition is equivalent to the statement that if | f|| = ||g]| =
I(f +9)/2], then f =g.

Theorem 1.14. Assume K is a convex subset of a strictly convex normed
Iinear space X. Then, for each f € X, Pg(f) contains at most one element.

Proof. Assume that g1,92 € Px(f), and E = ||f — gi|, ¢ = 1,2. From the
proof of Proposition 1.13, it follows that [[A(f —g1) + (1 = A)(f — g2)]| =
MFf—all + (@ = N[}f — g2|l = E for all A € [0,1]. Since the norm is strictly
convex, this implies that f — g1 = f — g2, i€, g1 = g2. o

Strict convexity is a global property of the norm. A local property de-
pendent on the one-sided Gateaux derivatives will sometimes give even more.
Assume that for a given f € X there exists a best approximant g* from
Y. Thus
If =gl <-4l

for all ¢ € Y. If, in addition, there exists a v > 0 for which
Wg—g*t<lIf —glt—1If 97l

for all g € Y, then we say that ¢* is a strongly unique best approximant to
f from Y. The reason for this terminology is simply that ‘strong uniqueness’
is stronger than ‘uniqueness’. If g* is a strongly unique best approximant to
f from Y, then it is most certainly the unique best approximant to f from
Y. The converse need not and generally does not hold. If strong uniqueness
is present, then we shall denote by +v(f) the largest constant satisfying the
above inequality.

Strong uniqueness and the identification of v(f) is intimately connected
with one-sided Gateaux derivatives. We state and prove our result for a sub-
space M of X.

Theorem 1.15. Let M be a subspace of X and f € X\M. Assume g* is a
best approximant to f from M. Set

y=inf{re(f-9g%,9) g€ M, |g]| =1}.
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Then v > 0 and, for all g € M,
Mo =gl <lif —gll = 1lf = "1
Furthermore, if v/ > v there exists a § € M for which
YlIg-g*l > I1f =gl = If =g"ll.
Therefore strong uniqueness holds if and only if v > 0, and in this case
)=

Proof. Since g* is a best approximant to f from M, we have from Theorem
1.5 that v > 0. Assume v > 0. From Exercise 2(a) and the definition of v, we

have
(f -9, —9) =gl

for all g € M. From Proposition 1.4,

Ilf—g" —tgll - If —g"l
¢

for all ¢ > 0 and g € M. Therefore

Z gl

If =g —gll=Ilf =g"ll = ~ligll
for all g € M. Since M is a subspace, we immediately obtain
Mg —g* I <If =gl =lf =gl

for all g € M.
Assume 4" > 4. By definition there exists a g € M, ||g|| = 1, for which

T(f = g%, -9 <llgl.
Thus for tg > 0, sufficiently small,
If — g™ —togll — [If — g™l <~'litogll-
Set g = g* + tog. Then
Ylg—g I >If =gl = IFf—g"ll,
which proves the theorem. o

4. Continuity
Let Y be a subset of X, and recall that

E(f;Y)=inf{||f —gll:g€ Y}

The first simple fact to be shown is the following.
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Proposition 1.16. E(f;Y) is a continuous function of f. In fact, for any

fl’f2 < X7
IE(f1;Y) ~ E(fo; Y < [l fi — fall-

Proof. Assume without loss of generality that E(f1;Y) > E(fe;Y). Given
€ >0, let go € Y satisfy

1f2 — goll < E(f2;Y) +e.
Such a gg necessarily exists. Then
E(fi;Y) < lfi = goll < fy = foll + If2 — goll S N f1 = fell + E(f3Y) + &
Thus, for every ¢ > 0, we have
E(f;Y)—E(f2Y)<|Ifi — fol +e
which implies the desired result. o

An important application of Proposition 1.16 is in this next result.

Theorem 1.17. Assume Y is a subset of X. Let f, f, € X, n € IN, satisfy
limp—co | f — full = 0. Assume g, € Py(f,) all n, and there exists a g €Y
for which lim,, o ||g — gnl| = 0. Then g € Py (f).

Proof. From the triangle inequality,

I —gll <If = fall + 11fn = gnll + llgn — gl

for all n. By assumption, lim, o [|f — foll = im0 |lg — gnll = 0. From
Proposition 1.16,

B [fa = gall = lim E(fa;¥) = B(;Y).
Thus ||f — gl] < E(f;Y). Since g € Y, this implies that g € Py (f). o
From Theorem 1.17 we deduce the following.

Proposition 1.18. Let U be a finite-dimensional subspace of X. Assume
fifn € X, n€ N, and lim, . ||f — ful| = 0. Further assume that Py(f) =
{u*}. Then, for any choice of u, € Py(fs), we have limp_.oo ||tn — u*|| = 0.

Proof. Since lim, . ||f — fn]l = 0, there exists a ¢ € IR such that ||f»]| < ¢
for all n. Thus |ju,|| < 2¢ for all n. Each element of the sequence {u,} is in

the compact set
Un{g:g9€ X, |gll <2c}.

Thus there exists a subsequence of {u, } which converges to some u € U. From
Theorem 1.17, u = u*. Since this is valid for any convergent subsequence, it
follows that lim, o |lun — u*|| = 0. o
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Before ending this chapter we make the following formal definition.

Definition 1.2. Let Y be an existence set for X. Then Y is said to be a
unicity set if Py(f) is a singleton for all f € X. That is, to each f € X
there exists a unique best approximant from Y. If Y is a subspace of X and
a unicity set, then we shall say that Y is a unicity space.

Some authors use the term unicity set, without the assumption of Y
being an existence set, to mean that Py (f) contains at most one element for
each f € X. Other authors use the terms Chebyshev and semi-Chebyshev,
respectively. In this work the term Chebyshev will be used in a different
context.

As an immediate application of Proposition 1.18, we have:

Corollary 1.19. Let U be a finite-dimensional unicity space of X. Then the
single-valued operator Py(-) is continuous on X .

That is, if f,f, € X, and lim,_[|f — fall = 0, then necessarily

Exercises
1. Prove that, if Y is an existence set for X, then Y is closed.
2. Prove that, for every f,g,h € X,

a)7+(f,ag) = ar(f,g) for all o > 0;
b) T+(fag + h) < T+(f9g) + T+(f7 h)

3. For fvg € X, set
T—(f7g) = lim w
t—0- t
Prove that 7— (-, ) always exists and 7—(f, g) = —7+(f, —9)-
4. Let f € X, f # 0. Assume that
im w

f(f,g) = lim

exists for all g € X. Prove that 7(f,-) € X*, i.e., 7(f,-) is a continuous linear
functional on X.

5. Assume that 7(f,g) exists for all f,g € X, with f # 0. Let M be a

linear subspace of X and f € X\M. Prove that g* € Py (f) if and only if
(f—g*,9g)=0forallge M.
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6. Let X be an inner product space and f # 0. Prove that

(f,9) = (£, 9)/ I fll-

7. Prove Theorem 1.6.
8. Let M be a linear subspace of X. Assume f € X, and

E=inf{||f-9gll : g€ M} >0.
Prove that
E = max{h(f) : h€ X", [I[]ll <1, h(g) = 0, all g € M}.

9. Prove Corollary 1.12.

10. Let K be a convex subset of X and f € X\K. Prove that g* is a strongly
unique best approximant to f from K if and only if

inf{re(f - 9",9" —9)/llg" —gll : g€ K,g#¢"} > 0.

11. Let U be a finite-dimensional subspace of X. Prove that, for each f € X,
Py(f) is bounded and closed (hence compact).

12. Let uy,...,u, be a basis for the n-dimensional subspace U of X. Set

n
H(ay,...,a,) = ”f— Zaiui .
i=1
Prove that H is continuous, convex, and limyjja|j|—cc H(a) = oc, where ||| - [|]
is any norm on IR"™ and a = (ay,...,a,).

13. For H(a) as in Exercise 12, set
A={a": H(a") = min H(a)}.

Prove that A is a convex, closed, bounded subset of IR".

Notes and References

Most of the material of this chapter may be found in either Sections 1 of
Chapter I and Appendix I of Singer [1970], Chapter 1 of Cheney [1966], or
Chapter 1 of Watson [1980]. Additional material on Gateaux derivatives is
contained in Dunford, Schwartz [1958, pp.445-451] and Chapter 26 of Kothe
[1969]. There is a direct interconnection between linear functionals and what
we have called one-sided Gateaux derivatives. It is given by the fact that the
range of h(g) for h € X* satisfying [J|h]l] = 1 and hA(f) = ||fl], is exactly
the interval [—74(f, —g), 7+(f,9)] (see Dunford, Schwartz [1958, p.447] and
Kothe [1969, p.349]). The Basic Separation Theorem was lifted from Dun-
ford, Schwartz [1958, p.417]. Singer [1970] is the best reference for a historical
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development of this material. The concept of strong uniqueness was intro-
duced by Newman, Shapiro [1963]. The approach taken here may be found in
Papini [1978], see also Wulbert [1971].

If the functional 7(f, g) of Exercise 4 exists for all f,g € X, f # 0, then
the space X is said to be smooth. This corresponds to the existence of a unique
h € X* satisfying |||h|]| = 1 and h(f) = ||f] for each f € X, f # 0. From
Exercise 5 we have that in a smooth space strong uniqueness never holds with
respect to any subspace. Smoothness and strict convexity are essentially dual
concepts (Ko6the [1969, p.346]). If X* is strictly convex (smooth), then X is
smooth (strictly convex). If X is a reflexive Banach space, then the converse
holds. This is one explanation for the fact that in any LP space, 1 < p < 0,
strong uniqueness from a subspace never holds.



