Modeling dynamic phenomena
in molecular and cellular biology

LEE A. SEGEL

Henry and Bertha Benson Professor of Mathematics
Weizmann Institute of Science

it 1 b
7 The right of the
> g “‘ University of Cambridge
3l to print and sell
RN ot T all manner of books
e " Henry Vill in 1534.
IS 1385, The University has printed
i and published continuously
il ince 1584.

sssss

~

Cambridge University Press

Cambridge

New York Port Chester
Melbourne Sydney



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 I1RP

32 East 57th Street, New York, NY 10022, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1984

First Published 1984
Reprinted with corrections 1987
Reprinted 1989

Library of Congress Cataloging in Publication Data
Segel, Lee A.

Modeling dynamic phenomena in molecular and
cellular biology.

Included bibliographical references and index.

I. Molecular biology — Mathematical models.

2. Cytology — Mathematical models. 3. Molecular
biology — Data processing. 4. Cytology — Data
processing. 1. Title. [DNLM: 1. Models, Biological.
2. Molecular biology. 3. Models, Structural.

4. Mathematics. QH 506 S454m]

QHS506.544 1984 574.87'0724 83-15172

ISBN 0 521 25465 S hard covers

ISBN 0 521 27477 X paperback

Transferred to digital printing 2001



Contents

Preface
Note to the instructor
Conventions and notations

1: Optimal strategies for the metabolism of storage materials

Biological background

Calculation of P and S at the end of the day

Calculating the net “‘profit’ from a given amount of
storage material

The final mathematical problem: maximize profit

A simplified model

Solution of the simplified mathematical problem

Conclusions from the mathematical results

The full problem

Final remarks

Exercises

Supplement: List of symbols and their definitions

2: Recursion relations in ecological and cellular population
dynamics
Constant birthrate
Birthrate that decreases linearly with population level
Steady solutions to equation (7) and their stability
Conjectured global behavior
The role of parameters
Control oscillations
The period-doubling route to chaos
Chaotic dynamics in cardiac cells
Cell maturation
Exercises
Supplement: A program to iterate equation (2.7)

page xi
xvii
XX

w

0 1 N A

12
13
15

16
16
17
18
19
23
23
25
28
30
31
34



Contents vi

3: Population genetics: separate generations 36
Formulation 36
Steady-state solutions 38
Stability theory 39
Conjectured global behavior 42
Quantitative considerations 44
Discussion 47
Exercises 48

4: Enzyme Kinetics 51
Law of mass action 51
Enzyme and substrate 53
Time scale 55
The quasi-steady state 57
Consequences of the quasi-steady-state approximation 58
Validity of the quasi-steady-state approximation 60
Cooperative kinetics 62
Percentage ligand bound in steady state 64
The cooperative enzymatic dimer 67
Product regulation 68
Exercises 70
Supplement: Solution of equations (4.15) and (4.16) 73

5: The chemostat 75
Choice of variables 76
Differential equations and initial conditions 77
Steady solutions 81
Dimensionless variables 84
Stability of the steady states 85
Qualitative behavior and the phase plane 87
Final remarks 91
Exercises 94

6: A model of the cellular slime mold cAMP signaling system 97
The slime mold life cycle 97
The role of cAMP 98
The model 100
Dimensionless variables 103
Steady-state solutions 104

Stability of the steady state 105



Contents vii

The developmental path 108
A simplified model 111
Phase-plane analysis of the simplified model 112
Explanation of relay and oscillation 114
Phase space and the state point 117
Robustness of the results 120
Interaction between analytic and numerical methods 120
Comparison with experiment 122
A modified model 124
Further comparisons with experiment 126
Exercises 128
7: Diffusion 130
The general balance law 130
Fick’s law 133
Diffusivity of motile bacteria 135
The rule of thumb for diffusion 140
Exercises 141
Supplement: Verification of equation (7.12) 143
8: Developmental pattern formation and stability theory 146
Background 146
Formulation 149
Dimensionless variables 150
Spatially homogeneous solutions 152
The spatially inhomogeneous case 153
Conditions for inhomogeneous instability 155
The critical wavelength 158
Numerical analysis of the unstable case 160
Patterns in finite intervals 164
The initial-value problem 166
Numerical analysis of the unstable case: finite interval 171
The wavelength for maximum growth rate 173
Further examination of pattern size 178
Modeling experiments in hydra 180
Two approaches to vein patterns in plants 183
Exercises 191

Supplement.: Boundary conditions in the numerical
analysis and model equations for nonlinear
behavior 193



Contents viii

9: A mechanical basis for morphogenesis 200
Modeling active domains 200
Simulations of folding cell sheets 202
Calcium-actin-myosin interaction 205
Effect of Ca-trigger maturation 208
The possible role of a developmental path 214
Chemical versus mechanical signaling 216
Skin organ primordia and cartilage condensations 220
A final word 220
Exercises 221

Mathematical appendixes

1: Mathematical prerequisites 223
Function 223
Limit 223
Derivative 223
Higher derivatives 225
Basic rules for manipulating derivatives 226
The chain rule 227
Implicit differentiation 227
Important functions and their derivatives 227
Partial derivative 229
Exercises 230
2: Infinite series and Taylor approximations 232
Exercises 235
3: Difference equations 237
Linear difference equations 237
Linear equations with constant coefficients 238
Steady-state solutions and their stability 241
Exercises 243
4: Linear differential equations with constant coefficients 244
First-order equations - constant coefficients 244
Linear equations 244
Second-order linear equations - constant coefficients 246
A system of two linear equations 247
Final remark 248

Exercises 249



Contents ix

5: Phase-plane analysis 250
Trajectories in the phase plane 250
Steady states 252
Phase portraits near steady states 254
Qualitative behavior of the phase plane 260
Exercises 262
6: Complex numbers 272
Exercises 274
7. Dimensionless variables 275
Dimerization: a sample problem 275
Introducing dimensionless variables 276
Advantages of dimensionless variables 279
Nondimensionalizing a functional relationship 280
Exercises 281
8: Integration 282
Exercises 286
Hints and answers for selected exercises 287
References 291

Index 297



1

Optimal strategies for the metabolism of
storage materials

This chapter demonstrates that elementary calculus can be used to illumi-
nate some aspects of the general question of how organisms should
employ storage materials, given that they have evolved to be ‘‘optimum’’
in some sense. The material presented here is a slight generalization and
expansion of ideas discussed by Cohen and Parnas (1976).

Biological background

Storage materials enable organisms to survive and prosper when there
is a temporary shortage of energy. We shall consider only microorgan-
isms in our discussion. For these, a commonly held view is the ‘‘excess
theory,”” according to which microorganisms synthesize storage mate-
rials if and only if the supply of external nutrient exceeds the supply
necessary for maximal current growth. The approach to be taken here is
different and is based on the following hypothesis.

Assumption 1. Storage materials are synthesized in such a manner as to
maximize the long-term growth rate.

We shall study photosynthetic algae under circumstances in which a
day of uniform light intensity and fixed length is followed by a night with
no light. The algae can utilize the light and available nutrients to synthe-
size proteins required for growth and reproduction. During the day they
can also synthesize energy-rich storage materials. These can be used to
furnish some or all of the energy that must be supplied at night, when
there is no energy flow from the environment and no synthesis - but
when energy is required for maintenance and possible cell division. The
starchy storage materials supply energy efficiently, but their presence has
a cost in diminishing protein production. The sort of question that we
shall address here is How much storage material should be synthesized by
optimally behaving algae under various possible circumstances? The
reader might pause now to try to answer this question, to see whether or
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not unaided intuition can arrive at the same conclusions that will be gen-
erated by our theoretical arguments.

There is evidence that photosynthesis is depressed during the time in
which cells divide. We shall assume that the depression is sufficiently
large that division during the night will maximize the expected number of
daughter cells.

Assumption 2. Cell division takes place only at night.

At any time ¢ we shall regard a cell as being composed of just two types
of materials: biosynthetic materials, denoted by P(¢), and storage mate-
rials, denoted by S(¢). The synthetic materials are largely proteins. In the
present context we thus regard ‘‘protein’’ and ‘‘synthetic material’’ as
Synonymous.

Consider the algae that are contained in some experimental setup, or in
some defined natural region. At the beginning of the day, r=0, let P,
and S, denote the amounts of protein and storage material that are asso-
ciated with these algae.! [Thus, P(0) =Py, S(0)=S,.]

Assumption 3. All cellular materials are synthesized at a constant photo-
synthesis rate R per unit amount of synthetic material.

At a given moment, both protein and storage material are synthesized
at rates that are proportional to the amount of synthetic material (i.e.,
protein) that is present. Consequently, as we shall see in detail later, the
amount of protein increases exponentially throughout the time it is being
synthesized. Suppose that the cell’s ‘‘best strategy’’ requires it to syn-
thesize a certain amount of storage material. The amount of protein at
the end of the day will be largest, as required by Assumption 1, if the
least possible time is devoted to synthesis of the required storage mate-
rial. This is accomplished by postponing the period of storage syn-
thesis to the end of the day, when the amount of synthetic machinery is
maximal.

The postponement of storage synthesis is really a conclusion of our
analysis. We have derived it intuitively, but a rigorous derivation could
be given with the aid of optimal control theory.

Conclusion 1. Storage material is synthesized at the end of the day.

1 A list of symbols and their definitions is provided in the supplement to this chapter.
For later chapters, and in general when reading theoretical material, it is recommended
that the reader compile such a list.
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Calculation of P and S at the end of the day

Given that its synthesis occurs at the end of the day, the amount of
storage material is completely determined by the number of hours de-
voted to its production. Call this number 7 (tau). The purpose of our
model is to calculate the optimal value of 7. The first step is to find math-
ematical expressions for the amounts of P and S at the end of the day,
for any given value of 7.

Let the length of the day be T hours (so that, of course, the length of
the night is 24 — T hours). Because 7 hours at the end of the day are de-
voted to the synthesis of storage material S, protein P will reach its
maximum after 7—7 hours and will remain the same for the rest of the
day:

P(TY=P(T—7).
By Assumption 3, if the day is 7 hours long, it then follows that
S(T)Y=RrP(T). 0))

[For full accuracy, the initial amount of storage material S; should be
added to the right side of equation (1), but the relative contribution of
this term is negligible.]

We here introduce an abbreviation that we shall employ frequently:

o=S(T)/P(T), 0<og<oo, (2)

The importance of ¢ (sigma) is evident even at this early stage; it is the
ratio of storage material to synthetic material that the cells produce. In
economic terms it is the ratio of ‘‘capital”’ (invested for future needs) to
production equipment. In terms of (2), equation (1) becomes

7=0/R. 3)

Because R is fixed, instead of calculating the optimal value of 7 we can
calculate the optimal value of ¢ - and, indeed, this latter calculation is
slightly more convenient.

Assumption 3, that synthesis takes place at a constant rate R, implies
that at any time ¢, 0<t<T 1,

dP(t)/dt=RP(1).

From the fact that P, is the amount of P present at the beginning of the
day, it follows (Exercise A1.7) that
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Figure 1.1. Graphs illustrating the result that exponential accumulation of syn-

thetic material P for 7—7 hours is succeeded by uniform synthesis of storage
material § for 7 hours. (7T is the length of the day.)

P(1)=Py exp(Rt). (4a)

Given that 7 is the time allotted for the synthesis of storage material and
T is the length of the day, P will be synthesized for T— hours, after
which the amount of P will remain constant for the rest of the day. Thus,
as we have seen, P(T)=P(T—7). Consequently from (4a),

P(T)=Py exp[R(T-1)]. (4b)

See Figure 1.1 for a graphical view of the accumulation of protein and
storage material.

We note for later use that the number of new daughter cells N can be
calculated from the formula

N=[P(T)—Py1/W, (5)

where W is the average weight of a daughter cell.

Calculating the net ‘‘profit’’ from a given amount of
storage material

We are examining how storage material enables organisms to operate
successfully in the presence of an energy shortage - at night in the present
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instance. Storage material is a rich source of the required energy, but it is
accumulated at the price of forgoing protein synthesis. We must now cal-
culate precisely the net advantage that flows from the possession of a
given amount of storage material - in the two cases in which this amount
does or does not furnish the total nocturnal energy requirements.

Assumption 4. During the night, cells need Ej; units of maintenance
energy per unit weight of synthetic material per hour. Also, the forma-
tion of each daughter requires an amount of energy E;. Thus, a total
amount of energy FE is required each night, where

E=Ej(24—T)P(T)+E,N. ()

There are two possibilities:

Case I: Stored energy is less than E.

Case II: Stored energy is greater than E.
In Case II, the cell will convert the excess stored energy into synthetic
material. In Case I, synthetic material must be broken down to provide
the required energy. We symbolize the various ‘‘costs’’ by

k k
p—= energy, S =5 energy, S —Q'P. )

That is, there are kp (respectively, kg) energy units per unit amount of P
(respectively, S), and conversion of a unit of storage material yields 8
units of synthetic material.

In the two cases, I and II, we shall now form the expressions for the
gain in nocturnal cell production due to the presence of storage material
(which is an efficient source of required energy) and the /oss due to the
fact that synthesis of protein during the day had to be forsaken because
of the production of storage material. We shall then seek a policy that
will maximize the ‘‘profit,”” the gain minus the loss.

Note from (5) that only protein contributes to the formation of new
organisms. Thus, we shall measure the /loss in cell production by the
total amount of protein L that was not synthesized during the day,
because part of the day was devoted to storage synthesis. The gain is the
total amount of protein G that did not have to be broken down during
the night, because part of the energy requirements could be met by
storage. Gain and loss are each figured out for a given policy. For each
policy, one subtracts what did happen from the extreme case in which
there is no synthesis whatever of storage material. In the computation of
loss, for example, the relevant extreme case is that in which protein
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is synthesized all day. From this, the protein actually synthesized is
subtracted.
Case I occurs when

ksS(T)<E. 8

In this case the energy available from the stored material is not sufficient,
so that an extra amount of energy must be supplied by breakdown of P.
If x denotes the amount of protein that must be broken down, then

kpx=E—kgS(T), i.e., x=[E—ksS(T)]/kp. (9a,b)

If there were no storage material, all the necessary energy would have to
be extracted from P. The amount of P required would be E/kp. Sub-
tracting from this the protein that is actually required in Case I, we have
a gain G due to the presence of the storage material, given by

G=S(T)/a, where a=kp/ks. (10a,b)

Case II occurs when kgS(T)>E. Here, instead of having to break
down protein to supply the nocturnal energy requirements, there is an
excess of stored energy that can be converted into additional protein.
Consequently, as the reader is asked to verify,>

E ksS(T)-E

G=""+8

11
kn ks a1

In both Case I and Case II the loss L is the same: the amount of P that
would have been synthesized if the whole day of length 7 had been
utilized, minus the actual amount synthesized in T—7 hours. Thus,
from (4a),

L=Pyexp(RT)— P, exp[R(T—1)]. (12)

Combining (10), (11), and (12), we can calculate the profit r=G—L,
where by profit we mean the increase in synthetic material brought about
by the storage policy. After a little rearrangement, we obtain (Exercise 1)
the following formulas:?

I: w:POexp(RT)l:<l+§>e_"—lJ when ks S(T)<E. (13a)
II: w=Pyexp(RT){(1+Bo)e °—1]
+E<L—*B-> when ksS(T)Y>E. (13b)
kp kg

2 On first reading, (11) and (13) should be accepted. Verification should be attempted
later, as explained in the Preface.
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The final mathematical problem: maximize profit

By Assumption 1, we wish to maximize w. More precisely, because the
possible storage ‘‘strategy’’ of the cells is expressed in their choice of o,
we wish to select the synthetic/storage ratio o that will maximize w (o).
The italicized phrase constitutes the mathematical problem to which we
have been led by our model building.

A simplified model

We shall now make an assumption that will make the problem consider-
ably simpler. To this end, note from (13) that Case II occurs if and only if
ksS(T)>E. Because ¢ is the variable with which we are concerned, it is
natural to use (2) and to write the condition for Case II in the form

kso>E/P(T). (14)

But this key condition for distinguishing Cases I and II is not a simple
one, because E/P(T) depends on ¢. To see this, first observe that (6) and

(5) imply®

W=EM(24—T)+§E’% =EM(24—T)+—Eu—j<1—Pf;) ) (15)
By (4) and (3), the right side of (15) depends on ¢ [through P(T)]. Conse-
quently, (14), together with (15), presents a somewhat complicated in-
equality to be solved for o.

We can circumvent the difficult nature of (14) by limiting our consider-
ations to situations in which there is so much protein production (because
of intense light) that

P, << P(T). (16)

Now the ‘‘nonconstant’’ term P,/P(T) in (15) can be neglected.

To take advantage of our finding that E/P(T) can be regarded as a
constant if (16) holds, we reformulate our problem with the aid of the
definition

=E/[ksP(T)]. (17

We now see from (14) that Case 11 holds when o> 4. From (15) and (16) it
follows that

3 Formula (15) can at first be accepted without checking, but a reader with pencil in hand
(see Preface) should experience no difficulty in rapidly verifying it.
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o=Ey(24—T)/ks+ (E;/Wks) = constant. (18)

Using (17) to replace E, we find that expression (13b) for the profit in
Case II becomes

=P, exp(RT){e'”[&(é —B>+Bo+1:]—l}. (19)

Now our mathematical problem is to maximize the function = (o) given
by (13a) when o< & and by (19) when o> g, where ¢ is a constant.

Solution of the simplified mathematical problem

Let us begin with Case II, where 0>3. From (19) we can easily verify
(Exercise 1) that

dn/30 =Py exp(RT—0)[B—Bo—a(a™'=B)—1]. 20)

We have a zero derivative, the classic necessary condition for a maxi-
mum, if

Ba=B—5<-§—B>—1, i.e.,ifa=6—&%—%+l. (21a,b)

But 0> g in the region under consideration, so that ¢ is certainly greater
than the right side of (21b) - for we expect that

1 1
B<1, sothatE>1, —-E+1<O. (22a,b,c)

[Equation (22a) records the biological assumption that something is lost
in converting storage material to protein; see the definition of 8 in (7).]
We thus see that the derivative in (20) is always negative, and the largest
value of w(¢) in Case II occurs on the boundary of the region, where
o=a. Let us now check Case 1. Here we find, from (13a) [Exercise 1],
that

on/d6=Pyexp(RT—oc)(l—0—a)/a. 23)
The derivative vanishes when
o=1—a. (24)

Note that the right side of (24) will be positive, because a =kp/kg is cer-
tainly expected (Exercise 2) to satisfy

a<l. (25)
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Figure 1.2. Schematic shape of the profit function (in the simplified problem)
when (a) 1-a>4, (b) | —a< . Note that in case (a) the derivative does not
vanish at the maximum; the derivative at & does not exist.

The point 0 =1—« is within the region ¢< g if and only if
l—a<d. (26)

If (26) does not hold, the derivative when o < g is positive, and the maxi-
mum value of 7= within this region occurs when ¢=4. See Figure 1.2.

Let o,, be the optimal value of the ratio o=S(T)/P(T), that is, the
value that gives a maximum profit = (o). Summarizing the results of our
calculations we obtain the following.

Conclusion 2
op=1—a if l—a<a, (27a)
op=6 if l—a2g. (27b)
In practice, typical values of the parameters are 0.1<¢<0.25and «=0.4
(Parnas and Cohen, 1976, p. 36). Thus, (27b) holds, and we predict that

storage materials are generally produced during the day in the exact
amount needed at night.

Conclusions from the mathematical results

We shall be content to draw only one further conclusion from the present
results. This requires studying the effect of the rate of photosynthesis R
on the optimal time interval 7., during which storage material is synthe-
sized. Assuming that the algae have evolved to operate under optimal
conditions, we note that (27a) and the relation 7,,=0,,/R of (3) yield

870p/dR =~ (1—a)/R*<0. (28)
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If (27b) holds, then, similarly,
870p/3R = —G/R*<0. (29)

Conclusion 3. The optimal length of time for the synthesis of storage
material decreases when photosynthesis increases.

Conclusion 3 is particularly interesting, for it is opposite to what
is expected from the excess theory. In fact, Assumption 1 and Conclu-
sion 1 have been verified for a number of microorganisms. Conclusion 3
has been verified by Cohen and Parnas (1976) for Chlamydomonas
reinhardii.

The full problem

We have proceeded under the assumption that the last term in (15) can be
neglected. When light intensities are strong, as many as eight daughter
algae appear during the night from the division of a single large cell; in
this case the simplification is justified. On the other hand, when light
intensities are weak, we can still proceed - without simplifying - by em-
ploying a little more sophisticated mathematics.

We recall that, in general, ¢ is not constant (i.e., ¢ depends on ¢); this
is the root of our difficulty. To proceed, it is convenient to define the
constants ¥ (psi) and ¢ (phi) by

Ey(24-T) + E, o E,
ks ksW’ ksW

¥ exp(—RT). (30a,b)

With these constants, the exact expression for g is

a(o)=y—¢e’, - (3D
combining (17), (15), and (4b). Consequently,

o>0¢ if and only if o>y —¢e”’. (32a,b)

For (32b) to hold, the graph of y=0¢ must lie above the graph of y=
v —¢e’. These graphs are depicted in Figure 1.3. It follows from the
figure that

o>0 if and only if o>0*. (33)
Here o* is a constant, defined by the intersection of the two graphs:

o*=y—dexp(o*). 34)
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Figure 1.3. Graph for determining when ¢ is less than or greater than (o) =

y—oe’.

Our problem is now seen to require the maximization of a function # (o)
given by (13a) when o< ¢* and by (19) when o> ¢*.
Let us first consider Case 11, when ¢>¢*. Noting from (31) that

ilij

2= _ e, 35

Py de (35)
we differentiate (19) to find (Exercise 3) that for Case II,
am 1 _ (,
ao=Poexp(RT—0)[—(l—B)—Bo—(a—6>(o+¢e ,)]. (36)

The positivity of 6+ ¢ exp(o) follows from (31). Consideration of (22a)
and (25) thus shows that dw/d¢ remains negative when ¢> ¢ even when
the simplifying assumption (16) is not made.

Because ¢ does not appear in (13a), dn/dc is computed in region I as
before. We conclude that if simplification (16) is not made, Conclusion 2
[equation (27)] must be modified to

op=1—a if l—a<go®, (37a)
Oopp=0* if l-—azo*. (37b)

We have no explicit expression for the constant ¢*. But from (34), by
implicit differentiation (Exercise 3), we can find the useful formula
do* T

R re (38)

Equation (38) shows that when 1 —« > 0*, o, is an increasing function



1. Optimal strategies 12

of the photosynthesis rate R. Equation (38) is also necessary in recalcu-
lating (29), for when 1 —o 2 0%,

o* d75p _ R(30*/0R)—o*

Tr="p" 3R R?

(39a,b)

It might be argued that it is ‘‘obvious’” that the optimal length of time 7,
during which storage material should be photosynthesized must decrease
as the intensity of sunlight increases (Conclusion 3). But in (39b) our
more general model shows that the sign of d7,,/3R can, in principle, be
either positive or negative - so that the behavior of 7,, could be counter-
intuitive. In fact, on substituting typical numerical values, it can be
shown that d7/dR retains the negative sign found in (29).

Final remarks

This chapter can be regarded as giving one example of an optimiza-
tion approach that has been used in many biological contexts. Another
example is provided by optimum foraging studies that proceed under the
hypothesis that animals adopt feeding strategies that maximize the rate
of net energy gain. See Hainsworth and Wolf (1979) for a review and
Townsend and Calow (1981) for a recent example of several texts con-
cerned with the adaptive significance of physiological characteristics.

A particularly extensive and interesting treatment of optimization
arguments in biology can be found in the Oster and Wilson (1978) study
of social insects. Of special value is the critique of optimization theory
found in the last chapter. For example, these authors point out that opti-
mization arguments, as in the present case, leave open the question of
how the optimum strategy is implemented. (This is not a fatal flaw,
because successful theories may well raise more interesting questions
than they answer.) They remark that careful examination of a biological
situation often reveals several conflicting goals, so that the question may
not be one of optimization, but rather how ‘‘conflicting interests...can
be resolved in a stable fashion.’” They stress the crucial difference be-
tween engineers who use optimization theory to arrive at a most efficient
design and theoretical biologists who use the theory ‘‘to infer ‘nature’s
design’ already created by natural selection.’’ It might also be added that
engineers can, in principle, build structures in an entirely novel fashion,
whereas organisms can improve themselves only relatively gradually, by
tinkering with their existing structure. In addition, some traits may not
be adaptive at all, as evolution lags a changing environment or promotes
some traits as side effects of others (Maynard Smith, 1978).
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In short, optimization theory has already provided many biological
insights, but, perhaps even more than other theoretical frameworks, it
must be employed with taste and restraint.

Exercises

w B WN -

N

. Verify equations (11), (13), (20), and (23).

. Why is (25) expected on biological grounds?

. Verify equations (36) and (38).

. How would the various formulas and conclusions be changed if Assump-
tion 3 were modified to take into account different constant rates of syn-
thesis for P and S?

. Try to supply convincing intuitive reasons to support result (27a) that
under certain circumstances the optimal cell behavior is to synthesize
(during the day) less storage material than is required to provide the
energy needed at night.

. (a) Show that the function 7 () is continuous at ¢ = by demonstrating
that 7w (o) has the same limit as ¢ — &, whether 6 <& or 6>0.

(b) Show that different answers are obtained for

lim 47

o3 do

depending on whether 6 < or ¢>6 when the limit is taken. That is,
show that = (S) has a discontinuous derivative at ¢ =g.

(c) Show that Y —¢ >0, as is assumed in Figure 1.3. In addition, show
that ¢(o) 20 for all biologically reasonable parameter values.

. Implicit in equations (5) and (6) is the assumption that not much of the
synthetic material P(T) is broken down at night to supply energy. Con-
clusion 2 indicates that this assumption is generally valid. Nonetheless,
even though cases in which P(T) is significantly broken down occur
only rarely, discuss the extensions of the mathematical model that
would be required to deal with this phenomenon. [Remarks: (i) The
problem is not fully specified, as is of course true for most research
problems. For example, one needs to know something about the timing
of the nocturnal cell divisions. (ii) A full discussion would assume the
dimensions of a miniproject. Even with very limited time, however,
something can be learned by beginning an account of some of the issues
involved and by making some explicit, not-unreasonable assumptions
concerning the biology - which properly should be the subject of litera-
ture review and/or experiment.]

. What do you anticipate to be the behavior of the fraction of storage
materials as a function of light intensity for algae cells growing in con-
tinuous light? After pondering the matter, compare your thoughts with
those expressed by Parnas and Cohen (1976, pp. 10-11).

. By checking the second derivative, verify that (24) provides a minimum
[when (25) holds].

. (a) Consider the function f given by

f(x)=x* when x<1;
f(x)=[{x=b)/(1-b)]* whenx21, b=1.
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For what value of x is f a minimum? A maximum? Sketch the graph

of f.
(b) Repeat (a) for the function given by

flx)y=x?, —oo<x<l;

f(x)=4-3x, I<x.

Sketch the graph of f(x) for 0<x<4r if
Sf(x)=x when sinx2cosx;

Sf(x)=—x when sin x<cosx.

Consider the function f given for x=1 by
fx)=x*—4x whenlnx—x+220;
f(x)=(nx+2)>—4x whenInx—-x+2<0.

(a) By sketching on one graph the curves y=In x and y=x—2, show that
the equation In x—x+2=0, x 21, has a single solution x*, where x* > 2.
(b) Show that the function f is continuous at x=x*.

(c) Show that if g(x) = (Inx+2)>—4x, then dg/dx <0 for x> 1.

(d) Sketch the graph of f(x) for x 2 1. In particular, show that there is a
maximum at x=x*.

(e) Sketch the graph of f(x) for x> 1 if

f(x)=(Inx+2)*—4x when Inx—x+220;
f(x)=x*—4x when Inx—x+2<0.

The following is taken from a discussion by A. Perelson (Segel, 1980,
Section 5.3) of histamine release in basophil cells. Virtually no knowl-
edge of the biology is required to answer the various questions.

Let C, m, and M be concentrations of free, singly bound, and doubly
bound antigen molecules. At steady state, it is found that

_ mK;(Sy—m)

T 21+ mK) (40a)
where m satisfies
(1-B)K;m2+m—B3S,=0; (40b)
B=KC/(1+KC).
Here K and K; are dissociation constants, and S, is the total receptor
concentration.
(a) Show that there is exactly one meaningful solution of the quadratic
equation (40b).
(b) Show that on substituting the solution of (40a) into (40b) we obtain

1+26—(1+46)2

M=s, FRZUE T s p)K;s,.

46 ’
Find the constants a,, a;, and a, in the series
(1+48)2=ay+a,8+a,6%+...,

and use the result to derive the approximation
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M=15,8, 0<éxl.

(c) It is desired to find the value of 3 that maximizes M. To do this, it is
sufficient to set dM/dm=0 (m, not 3!). Why? Show from (40a) that
dM/dm=0 if m*K;+2m—S,=0.

(d) Conclude that M is maximized when 8=13.

(a) Calculate the net amount of protein synthesis, over the day and
night, if no storage material is made.

(b) Repeat (a) when 7 hours at the end of the day are used to synthesize
storage material.

(c) Use (a) and (b) to provide an alternative derivation of (13).

Supplement: List of symbols and their definitions

P(t)
S(¢)
Py
So

Weight of protein at time ¢

Weight of storage material at time ¢

Weight of protein at beginning of day

Weight of storage material at beginning of day
Rate of synthesis of cellular material per unit amount
of P

Hours per day devoted to production of S

Length of day

S(T)/P(T)

Average weight of daughter cell

Maintenance energy/unit weight of P/hour

Energy required for the formation of each new cell
Total energy required each night, for maintenance and
reproduction

Energy units/unit weight of P

Energy units/unit weight of S

Units of S obtained on conversion of one unit of P
kp/ks

Gain in P, owing to storage

Loss in P, owing to storage

Profit: gain minus loss

E/[ksP(T)]

Value of ¢ that maximizes profit

Combinations of constants defined in (33)
Particular value of o depicted in Figure 1.3

Value of 7, when o=0,,



