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1
Entropy and mutual information

1.1 Discrete random variables

Suppose X is a discrete random variable, that is, one whose range
R ={xy, xp, ...} is finite or countable. Let p; = P{X = x;}. (For probabil-
istic terminology consult Appendix A.) The entropy of X is defined by

H(X)=Y_ pilog—

1
. (1.1)
i=1 Dpi

This definition needs elaboration. First, the base of the logarithm is purposely
left unspecified. If necessary, however, we shall denote the base-b entropy by
Hp(X), and say that the entropy of X is being measured in base-b units. Base-
2 units are called bits (binary igits), and base-e units are called nrats (natural
digits). Second, if p; = 0, the term p;logp;! in (1.1) is indeterminate; we
define it to be 0, however. (This convention is by no means arbitrary; see Prob.
1.1.) Finally, if R is infinite the sum (1.1) may not converge; in this case we
set H(X) = +o0.

Example 1.1 Let X represent the outcome of a single roll of a fair die. Then
R={1,2,3,4,5,6} and p; :é for each i. Here H(X)= log6 = 2.58
bits = 1.79 nats. O

Example 1.2 Let R = {0, 1}, and define X by P{X =0} = p, P{X =1} =
1 — p. Then H(X)= —plogp — (1 — p)log(1 — p), and so H,(X), as a
function of 0 =< p =< 1, is identical to the binary entropy function H,(p),
which was defined in Eq. (0.13). In what follows, we will frequently represent
the function-plogp — (1 — p)log(l — p), where the bases of the logarithms
are unspecified, by H(p), and call it the entropy function. Figure 1.1 gives its
graph (cf. Fig. 0.4). More generally, if p = (p1, ..., p,) is any probability

17



18 Entropy and mutual information

10 V2 |

Figure 1.1 The entropy function H(p).

vector, that is, p;=0 and > p;=1, we define H(p) = H(p1, p2»

.., pr) = >_pilogp;,~!. This notation is not quite consistent, since for » = 2
we have H(p, 1 — p) = H(p). (Thus we use the symbol H in three slightly
different ways: H(X) is the entropy of the random variable X; H(p) =
—plogp—(1—p)log(l — p) for 0<p=<1; and H(pi, p2, ..., pr) =
> pilogp,~! if p is a probability vector.) (Il

Example 1.3 If the sum > 7 ,(nlog?*n)~! is denoted by 4, and if the random
variable X is defined by P{X = n} = (Anlog?n)~! for n =2, 3, ..., then
H(X) = +o0. (See Prob. 1.2.) [l

It turns out that H(X) can be thought of as a measure of the following things
about X:

(a) The amount of “information” provided by an observation of X.
(b) Our “uncertainty” about X.
(¢c) The “randomness” of X.

In the next few paragraphs we will discuss these properties informally, but the
reader should be told immediately that H(X) does in fact measure these
things in a deep mathematical sense as well. Indeed there are many possible
functions of a random variable X that share the properties to be discussed
below, but only H(X) will do for the study of communications problems.

For each x € R define I(x) = —log P{X = x}. Then [ is a new random
variable, and H(X) is its average. The function /(x) (see Fig. 1.2) can be
interpreted as the amount of information provided by the event {X = x}.
According to this interpretation, the less probable an event is, the more
information we receive when it occurs. A certain event (one that occurs with
probability 1) provides no information, whereas an unlikely event provides a
very large amount of information. For example, suppose you visited an oracle
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I(x)

P {IXx}—-

Figure 1.2 The function /(x).

who could answer any “yes or no” question. If you asked, “Will I live to be
1257 and got a “no” answer, you would have gained very little information,
since such extreme longevity is exceedingly improbable. Conversely, if you
got a “yes,” you would have learned much. If now millions of people visited
the oracle and asked the same question, most would get a “no,” a few would
get a “yes,” and the average amount of information provided would be H(p),
where p = P {age at death = 125}. Moreover, just before receiving the
oracle’s reply you would probably be slightly anxious; this reflects the fact
that a small amount of uncertainty exists about the answer. H(p) is equally a
measure of this uncertainty.! Finally, if a dispassionate census worker were
assigned to record the oracle’s answers, he would become extremely bored
and might begin to suspect the oracle of being a machine that always says
“no.” This reflects the fact that the random variable X representing the
oracle’s reply is not very random. Here H(p) measures the randomness of X.

As a less transcendental example, define X by P{X =0} = P{X =1}
= % Then 7(0) = I(1) = H(X) = log2 =1 bit, that is, the observation of
the “bit” X provides one “bit” of information.

Our first theorem concerns the maximum possible value for H(.X) in terms
of the size of R.

Theorem 1.1 Let X assume values in R={xy, xp, ..., x}. Then 0 <
H(X) = logr. Furthermore H(X) =0 iff p; =1 for some i, and H(X) =
log r iff pi=1/r foralli.

Proof Since each p; is <1, each term p;logp;! in (1.1) is =0, so
H(X) = 0. Furthermore plogp~! = 0iff p =0 or 1, and so H(X) = 0 iff
each p; =0or 1,1i.e., one p; = 1 and all the rest are 0.
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Now by Jensen’s inequality (see Appendix B), since logx is strictly
convex N,

! 1 ! 1
HX)=> pi log— < logZp,; = logr,
i=1 4 i=1 t

with equality iff p; is a constant independent of i, i.e., p; = 1 /r foralli. O

Informally, Theorem 1.1 identifies a uniformly distributed random variable
as the most “random” kind of random variable. Formally, it asserts that the
maximum value of the function H(pi, p2, ..., pr), as p=(p1, ---, Pr)
ranges over the » — 1 dimensional simplex {p; = 0, > p; = 1}, is log r and is
achieved uniquely atp = (1/r, 1/r, ..., 1/F).

Our next goal is to define, for a pair of random variables X and Y, a
quantity H(X|Y) called the conditional entropy® of X, given Y. In order to
do this neatly, we introduce some streamlined notation. For x in the range of
X, y in the range of Y, define:

p(x) = P{X =x},

p(y) =P{Y =y},
px, y) = P{X =x,Y =y}, (1.2)
px|y) = P{X =x|Y = y} = p(x, y)/ p(»),

p(y|x) = P{Y = y|X = x} = p(x, y)/ p(x).

(This notation is occasionally ambiguous, and if absolutely necessary appro-
priate subscripts will be added, for example, px(x), py|x(y, x). This need will
arise, however, only when actual numbers are substituted for the letters x, y;
see Example 1.6.) Our definition is:

HX|Y) = E{log#]
p(x[y)

=> px, y) log;. (1.3)
o p(x]y)

(In (1.3) we observe the same conventions as we did for sum (1.1):

0log0~! =0; a divergent sum means H(X|Y) = +o0c.) Let us pause to

motivate the definition via a simple model for a communications channel,

called a discrete memoryless channel (DMC).
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Figure 1.3 A discrete memoryless channel.
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Figure 1.4 Another view of a DMC.

A DMC (Fig. 1.3) is an object that accepts, every unit of time, one of »
input symbols, and in response expels one of s output symbols. (This channel
is “discrete” because there are only finitely® many input and output symbols,
“memoryless” because the current output depends only on the current input
and not on any of the previous ones.) The precise labeling of the input and
output symbols is of no real importance, but it is often convenient to let
{0,1,...,r—1} and {0, 1,...,s— 1} represent the input and output
alphabets.

The output is not a definite function of the input, however; rather the
channel’s behavior is governed by an » X s matrix of transition probabilities
(p(¥|x)). The number p(y|x) represents the probability that y will be the
output, given that x is the input. Clearly the number p(y|x) must satisfy

p(ylx) =0 for allx, y,
> pol =1 for all x.
y

Sometimes. when r and s are not too big, the DMC is depicted graphically as
shown in Fig. 1.4. In such a picture each pair (x, y) with p(y|x) >0 is joined
by a line labeled with the number p(y|x).

Example 1.4 (the binary symmetric channel, already discussed in the intro-
duction). Here » = s = 2, and the graph looks like this:



22 Entropy and mutual information

Oe \-p 0

I-p

Example 1.5 (The binary erasure channel). Here r =2, s = 3. The inputs
are labeled “0” and “1,” and the outputs are labeled “0,” “1,” and “?.”

Such a channel might arise in practice for example if the inputs to a physical
channel were the two squarewaves.

_f——l_and_L_J_

'lou “] "

The detector at the output would receive a noisy version of these square
waves, r(?):

"OII [ | 1] l?ll

It might base its decision about whether “0” or “1” was sent on the value of
the integral [ r(f)dt = 1. If I is positive, the detector could decide “0” was
sent; if negative, “1.” However, if |/| is very small, it might be best not to
make a “hard decision” about the transmitted bit, but rather to output a
special erasure symbol “?.” If the channel is relatively quiet, the transitions
0 — 1 and 1 — 0 would be much less likely than 0 — ? and 1 — 7, so the
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assumptions P{Y = 1|X = 0} = P{Y = 0|X = 1} = 0 might be reasonable.
(For more on “hard decisions,” see Prob. 4.15.) O

Suppose now that the inputs to a DMC are selected according to a
probability distribution p(x) on {0, 1, ..., » — 1}, that is, assume the input X
to the channel is characterized by

P{X = x} = p(x), xe{0,1,...,r—1}.

Having specified X, we can now define a random variable Y which will
represent the output of the channel. The joint distribution of X and Y is given

by
px, ) =P{X =x,Y =y}

= P{X =x}P{Y = y|X =x}

= p(x)p(y|x),

and the marginal distribution of Y is

p(y) = P{Y =y}

=Y P{Y = y|X = x}P{X = x}

= p(rx)p().

Similarly,
p(x|y) = p(x, y)/p(y)

= p(r)p)/ Y p(rIx)p(x").

Hence corresponding to every DMC and input distribution there is a pair of
random variables: X, the “input” to, and Y the “output” from, the channel.
Conversely, given any pair (X, Y) of discrete random variables , there exist a
DMC and input distribution such that X is the input and Y is the output:
simply define the channel’s transition probabilities by p(y|x) = P{Y =
y|X = x}. In other words, given any ordered pair (X, Y) of random variables,
it is possible to think of ¥ as a “noisy” version of X, that is, as the result of
transmitting X through a certain DMC.

Example 1.6 Let X assume the values +1, +2, each with probability }p and
let ¥ = X2. The corresponding DMC looks like this:
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+2 |
+oy2
px(-Z)- '/4 | 4 py(4): |/2
-2
+1 |
+0-
B (==l | I opyth=1y,
-1
X Y

In this example X and Y are uncorrelated, and yet it is clear that ¥ provides
a considerable amount of “information” about X (see Prob. 1.10). O

Given that we think of Y as a noisy version of X, and that H(X) is a
measure of our prior uncertainty about X, how can we measure our uncer-
tainty about X after observing Y? Well, suppose we have observed that
Y = y. Then, since the numbers p(x|y) = P{X =x|Y = y} for fixed y
represent the conditional distribution of X, given that ¥ = y, we define the
conditional entropy of X, given ¥ = y:

1
p(xly)

H(X|Y =)= p(x|y)log

This quantity is itself a random variable defined on the range of Y; let us
define the conditional entropy H(X|Y) as its expectation:

HX|Y) =) p(MHX|Y = y)
y

1
= 1
; PO D pLlnlog s

1
= plx, y)log———,
o p(x|y)
in agreement with Eq. (1.3). Thus, for a given pair X, Y of random variables,
H(X|Y) represents the amount of uncertainty remaining about X after Y has
been observed.

Example 1.7 Consider the following DMC, which is a particular case of the
binary erasure channel of Example 1.5:
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0 3/4 0
I/4
?
1/2
| Y [

Here py(0) =3, py(1) = }. Then a simple calculation yields:

H,(X) = 0.9183 bits,
Hy(X|Y = 0) =0,
H)X|Y=1)=0,
H)X|Y=7=1.

Thus, if Y = 0 or 1, there is no remaining uncertainty about X, but if ¥ = 7,
we are more uncertain about X after receiving Y than before! However,

Hy(X|Y) = 0.3333 bits,

so that, on the average, at least, an observation of Y reduces our uncertainty
about X. O

We now present a technical lemma on H(X|Y) that will be useful later.

Theorem 1.2 Let X, Y,Z be discrete random variables. Using obvious
notation (see Egs. (1.2)), define, for each z, A(z) = > . , p(y) p(z|x, y). Then

H(X|Y) < H(Z)+ E(log A).

Proof

H(XY)—E{log ! }
p(x|y)

1
= Z p(x, v, z)log——.
et p(x|y)

=Y pe S P oy
g w P

p(x[y)’
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For fixed z, p(x, y, z)/ p(z) = p(x, y|z) is a probability distribution, and so
we can apply Jensen’s inequality to the inner sum. The result is

H(X|Y) < ZP(Z)I glp() Z;pg(xry’;)]

=Y retoe +Zp(z>logzp(" )

p(x[y)

But p(x, y, 2)/ p(x|y) = p(x, y, 2)p(y)/ p(x, y) = p(»)p(z|x, y). O

Corollary (“Fano’s inequality”). Let X and Y be random variables, each
taking values in the set {x, x, ..., x,}. Let P, = P{X # Y'}. Then

H(X|Y) < H(P,) + P.log(r — 1).

Proof In Theorem 1.2 define Z=0if X =Y and Z=1 if X # Y. Then
A(0)=T1and A(1) =r—1. O

[Note: The proof of Theorem 1.2 via our streamlined notation contains
some subtle features; see Prob. 1.11.]

Fano’s inequality has an interesting heuristic interpretation. Think of
H(X|Y) as the amount of information needed to determine X once Y is
known. One way to determine X is to first determine whether or not X = Y;
if X=7Y, we are done. If, however, X # Y, there are r — 1 remaining
possibilities for X. Determining whether or not X = Y is equivalent to
determining the random variable Z defined in the proof; since
H(Z)= H(P,), it takes H(P,) bits to do this. If X = Y (this happens with
probability P,), the amount of information needed to find out which of the
remaining » — 1 values X has is, by Theorem 1.1. at most log(r — 1).

Example 1.8 We apply Fano’s inequality to the channel of Example 1.7. Here
r=3, and P{X=Y}=3 P.=1 Fanos bound is thus H(X|Y) <
H(%) +1log2 =1log3 +3log3 + 1log2 = log3 — 1log2 = 1.2520  bits.

(For examples where Fano’s inequality does better, see Prob.1.11.) Il

Now since H(X) represents our uncertainty about X before we know Y,
and H(X|Y) represents our uncertainty after, the difference H(X) — H(X|Y)
must represent the amount of information provided about X by Y. This
important quantity is called the mutual information between X and Y, and is
denoted by /(X; Y):
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I(X; Y)= H(X) — HX|Y). (1.4)

(In Example 1.7, I5(X; Y) = 0.9183 — 0.3333 = 0.5850; thus, informally at
least, the observation of a channel output provides 0.5850 bits of information
about the input, on the average.) Using the notation of Eq. (1.2), we obtain
several important alternative forms for /(X; Y):

I(X: Y) = ) log P 1.5

(X: Y) ;p(x »log=53 (1.5)
p(x, y)

- 1.6

=2 ol (10

_ log PO L

;p(x, g (1.7)

(The details are left as Prob. 1.14.)
We thus see that /(X; Y) is the average, taken over the X, Y sample space,
of the random variable*

pGly) log &Y _ pOY)

p() p()p(y) p(»
Now I(x; y) can be either positive or negative (e.g., in Example 1.7
1(0; 0) = log% and /(0; 7) = log %); however, we shall now prove the impor-
tant fact that /(X; Y) cannot be negative. This is surely reasonable, given our
heuristics: we do not expect to be misled (on the average) by observing the
output of the channel.

I(x; y)=lo

Theorem 1.3 For any discrete random variables X and Y, I(X; Y) = 0.
Moreover 1(X; Y) = 0ifand only if X and Y are independent.

Proof We apply Jensen’s inequality to Eq. (1.6):

p(xX)p(y)
—I(X: — log 8222277
I(X;Y) xE,y p(x, y)log o(x, )

< log Y p(x)p(y)
X

= logl =0.

Furthermore, in view of the strict convexity N of logx, equality holds iff
p(x)p(y) = p(x, y) for all x, y, that is, iff X and Y are independent. O
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(Although we shall not emphasize it, Theorem 1.3 shows that /(X; Y) is a
good measure of the dependence between X and Y, better for example than
the covariance Cov(X; Y). for example, recall Example 1.6. There, as is
easily verified, Cov(X; Y) = 0 but I,(X; Y) =1 bit.)

Using Egs. (1.4)—(1.7), it is possible to prove immediately several impor-
tant facts about mutual information:

I(X; Y) = I(Y; X), (1.8)
I(X; Y) = H(Y) — H(Y|X), (1.9)
I(X; Y)= HX)+ HY) - HX, Y), (1.10)

where in (1.10) we have defined the joint entropy of X and Y by

1
p(x, y)

H(X, Y) =Y p(x, y)log (1.11)
Xy

The proofs of these relationships are left as Prob. 1.14. They can be easily
remembered by means of the Venn diagram shown in Fig. 1.5. It is a fruitful
exercise to give informal interpretations of each of the relations implied by
Fig. 1.5. For example, Eq. (1.8) expresses the “mutuality” of mutual informa-
tion; H(X, Y) = H(X) + H(Y|X) becomes “our uncertainty about X and Y
is the sum of our uncertainty about X and our uncertainty about Y, once X is
known,” and so on.

Now if we are given three random variables X, Y, Z, we define the mutual
information /(X, Y; Z) (“the amount of information X and Y provide about
Z”), analogously with Eq. (1.7), by

Figure 1.5 A mnemonic Venn diagram for Eqs. (1.4) and (1.8)—(1.10).
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p(z|x, y)]
p(2)

_ZP(X ). Z)logp( z|x, »
ot p(z)

We would not expect X and Y together to provide less information about Z
than Y alone does, and indeed this is the case.

I(X,Y; 7)= E{log

Theorem 1.4 [(X, Y; Z) = I(Y; Z), with equality iff p(z|x, y) = p(z|y) for
all (x, y, z) with p(x, y, z) > 0.

Proof
I(Y: Z)— I(X, Y; Z) = [ Pz Iy) o PEI. y):|
p(2)
_ [ p(z]y) }
& o, »)
p(z|y)
=" px. 3. 2) log 2
XY,z p(z|x, y)
Applying Jensen’s inequality, we have
IY: 2)~ I ¥: 2) < log ¥ plx, 3 2222
X,z p(z|x, y)

= log»_ p(x, y)- p(z]y)

XY,z
= logl1 =0.

The conditions for equality follow from the discussion of Jensen’s inequality
in Appendix B. O

The condition for equality in Theorem 1.4 is very interesting; it says that the
sequence (X, Y, Z) is a Markov chain, which for our purposes means simply
that X, Y, and Z can be viewed as shown in Fig. 1.6. Here DMC 1 is
characterized by the transition probabilities p(y|x), and DMC 2 by the
transition probabilities p(z|y) = p(z|x, ). We have already observed that
given any pair of random variables (X, Y), it is possible to devise a DMC
with X as the input and Y as the output. However it is not true that if
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(X, Y, Z) is any triple of random variables, there exists a pair of DMC’s such
that X, Y, Z have the relationship of Fig. 1.6. Indeed, it is clear that a
necessary and sufficient condition for this is that (X, Y, Z) forms a Markov
chain, that is, p(z|y) = p(z|x, y) (i.e., Z depends on X only through Y).

Now let’s assume that (X, Y, Z) is a Markov chain, as in Fig. 1.6. Then by
Theorem 1.4, I(X; Z) < I(X, Y; Z), and since (X, Y, Z) is a Markov chain,
I(X,Y;, 2)=1(Y; Z). Hence I(X; Z2) < I(Y; Z). Now if (X, 7Y, Z) is a
Markov chain, so is (Z, Y, X) (see Prob. 1.15), and hence I(X; Z)
=< I(X; Y). Since this is an extremely important information-theoretic prop-
erty of Markov chains, we display it as a theorem.

Theorem 1.5 If (X, Y, Z) is a Markov chain, then

I(X; Z) < { [I(())f ; 5)) -

Referring again to Fig. 1.6, we find that DMC’s tend to “leak” information.
If the DMC'’s are deterministic (i.e., if ¥ is a definite function of X and Z a
definite function of Y), we can think of the casade in Fig. 1.6 as a kind of
data-processing configuration. Paradoxically, Theorem 1.5 says that data
processing can only destroy information! (For an important generalization of
this, see Eq. (1.15).)

Example 1.9 Let X, X;, X3 be independent random variables; then (X1,
X1+ Xy, X1+ X, + X3) is a Markov chain, and so [I(X;; X+ X,
+ X3) = I(X; X1 + X3) (see Probs. 1.16 and 1.39). O

Example 1.10 In Fig. 1.6 assume that X is described by P{X =0} =
P{X =1} =1, and that both DMC’ are binary symmetric channels with
error probability p. Then

I(X; Y)=1— Hy(p) bits,
I(X; Z)=1— H,2p(1 — p)] bits.

These two functions are plotted as follows: (For an extension of this

X-—= DMC 1 > Y — DMC 2 —= 7

Figure 1.6 An information theorist’s view of a Markov chain.
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I-H,(p)

I- Hy(2p(1-p))

example, see Probs. 1.18 and 1.20.) L]

We conclude this section with two results about the convexity of /(X; Y)
when it is viewed as a function either of the input probabilities p(x) or of the
transition probabilities p(y|x).

Theorem 1.6 /(X; Y) is a convex N function of the input probabilities p(x).

Proof We think of the transition probabilities p(y|x) as being fixed, and
consider two input random variables X and X, with probability distributions
pi1(x) and py(x). If X’s probability distribution is a convex combination
p(x) = api(x) + B pa(x), we must show that

al(X1; Y1)+ BI(X; Vo) < I(X; ),

where Y1, Y, and Y are the channel outputs corresponding to X, X;, and X,
respectively. To do this consider the following manipulation, which uses
obvious notational shorthand:

al(Xy; Yi) + BI(X2; Ya) — I(X; Y)

= > anx »log 2 ))+Z,3pz( Do (see Eq17)
Xy

p(y|x)
p(y)

= lapi(x, y) + Bpa(x, y)]log
Xy

p(y)

—aZpl(x g =25

p(y)
§ log =22 1.12
+p > pa(x, y)log 70) (1.12)

We now apply Jensen’s inequality to each of the above sums. For example,

Z pi(x, y)log p((y)) < lome( ¥) P((,V))
Xy
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But
() ()
> i, L N~ > i y)
= ) 55
)
=)~ n)
I )
=1.
Hence the first sum in (1.12) is < 0; similarly, so is the second. O

Corollary The entropy function H(pi, pa, ..., pr) is convex N.

Proof Let X be a random variable distributed according to P{X =i} = p;.
Then I(X; X)= H(X)= H(p1, p2, ---, pr)- The result now follows from
Theorem 1.6. O

Theorem 1.7 I(X; Y) is convex U in the transition probabilities p(y|x).

Proof Here the input probabilities p(x) are fixed, but we are given two sets of
transition probabilities p;(y|x) and p(y|x) and a convex combination
p(y|x) = api(¥|x) + B p2(y|x). It is required to show that

I(X; Y) < al(X; 1) + BI(X; Ya), (1.13)
where Y, Y}, Y, are the channel outputs corresponding to the transition

probabilities p(y|x), pi(y|x), and p,(y|x). Again using obvious notation, the
difference between the left and right sides of (1.13) is (see Eq. (1.5))

p(x|y)
p(x)

> lapi(x, »)+ Bpa(x, y)]log
Xy

=S e 1og 28 S i 3y 10g 2
X,y Xy

Pe) @)
— p(x|y) P(xy)
= a; pi(x, y)log ) -I-ﬁxz’y: pa(x, y)log ) (1.14)

The first sum in (1.14) is, by Jensen’s inequality,
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N

I—l

— alog [Z p(xly)pl(y)l
Xy

=alog) pi(y) =0.
y

Similarly the second sum is < 0. O

1.2 Discrete random vectors

In Eq. (1.11) we defined the entropy H(X, Y) of a pair of random variables,
and on p. 28 we defined the mutual information /(X, Y; Z) between a pair of
random variables and a third random variable. In this section we will general-
ize those definitions and define H(X), H(X]Y), and /(X; Y), where X and Y
are arbitrary random vectors.

Our point of view is that a random vector X = (X, X5, ..., X,,) is just a
finite list of random variables X;. The distribution of X (the joint distribution
of X1, Xy, ..., X,) is the function p(xi, x5, ..., x,) = P{Xl =X, X =
X2, ..., Xy = x,}, where each x; is in the range of X;. A glance at the
definitions in Section 1.1 should convince the reader that H(X),
H(X|Y), I(X; Y) depend only on the distribution functions p(x), p(y|x), etc.,
and not in any way on the fact that the values assumed by X and Y are real
numbers. Hence we can immediately extend these definitions to arbitrary
random vectors; for example the entropy of X = (X1, ..., X,,) is defined as

1
H(X) = Z peOlog—

where the summation is extended over all vectors x in the range of X. And
obviously Theorems 1.1-1.7 remain true.

The generalization of Theorem 1.5 to arbitrary random vectors has a
particularly important application, which we now discuss. Consider the model
for a communication system shown in Fig. 1.7 (cf. Figs. 0.2 and 5.1). In Fig.
1.7 the random vector U is a model for k£ consecutive source outputs; the
encoder is a device that takes U and maps it into an n-tuple X for transmission
over the channel; Y is the channel’s noisy version of X; and the decoder is a
device that takes Y and maps it into a k-tuple V, which is delivered to the
destination and is supposed to reproduce U, at least approximately.



34 Entropy and mutual information

The point of all this is that, for any realizable communication system, the
sequence (U, X, Y, V) of random vectors forms a Markov chain (see Fig.
1.6). Informally this says that the output of each box in Fig. 1.7 depends only
on its input and not on any of the earlier random vectors. Formally it gives
many conditions on the various conditional probabilities, for example,
py|x, w) = p(y|x), p(v|y, x) = p(v|y). (There is really no question of prov-
ing this part; it is one of the fundamental assumptions we make about a
communication system.) Applying Theorem 1.5 to the sub-Markov chain
(U, X, V), we get I(U; V) < I(X; V). Similarly /(X; V) =< I(X; Y). Hence
for the random variables of Fig. 1.7,

I(U; V) < I(X; Y). (1.15)

This result is called the data-processing theorem. Stated bluntly, it says that
the information processing (the work done by the encoder and decoder of Fig.
1.7) can only destroy information! It says, for example, that the noisy channel
output Y in Fig. 1.7 contains more information about the source sequence U
than does the decoder’s estimate V. (While this is true theoretically, the data
processing of the decoder is nevertheless required to render this information
usable.)

We now come to a pair of inequalities involving /(X;Y) and
S (X Yi), where X = (X1, X, ..., Xp)and Y =(1), Y2, ..., V) area
pair of n-dimensional random vectors.

Theorem 1.8 If the components (X1, Xa, ..., X,) of X are independent,
then

IXY) =Y I(X; Yy,
i=1

source —>(U],U2,...,Uk) —» [encoder| —» (X.l ,Xz,...,Xn)—>
U X

- —» (Y] 3Y29---3Yn) —’ _’(V])st---’vk)
Y v

Figure 1.7 A general communication system.
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Proof Letting E denote expectation on the joint sample space of X and Y, we
have

IX;Y) = E[logM] (see Eq. (1.5))
P(x)
p(xly) ]
= F|log ,
[ p(x1)p(x2) ... p(x)
since X1, X, ..., X, are assumed independent. On the other hand,

(1| i
Sann - af

B p(xi|yr) ... p(xnlyn)]
_E[l" oG ) )

Hence

n

> I, Yy - I(X: Y)

i=1

_ E{lo pxily) - p(xnlyn)}
p(xly)

- logE{p(xllyl) p(xnlyn)} _o

p(xly)

by Jensen’s inequality, since this last expectation is

S ope W= pealy) - @y py)
X,y Xy

=1. O

Example 1.11 Let X, X, ..., X, be independent identically distributed
random variables with common entropy H. Also let t be a permutation of
the set {1,2,...,n}, and let Y; = Xg;. Then I(X;Y)=nH, but
S I(X;; Yi) = kH, where k is the number of fixed points of 7, that is, the
number of integers i with s7(i) = i. In particular if 7 has no fixed points, for
example if (i) = i + 1 (mod n), then >_I(X;; Y;) = 0 (see Prob. 1.23). (|

If we think of (Y, Y2, ..., Y¥,) as the n outputs of a noisy channel when the
inputs are X, X, ..., X,, Theorem 1.8 tells us that, if the inputs are
independent, Y provides more information about X than the total amount of



36 Entropy and mutual information

information provided about each X; by the corresponding Y;. The next
theorem will tell us that if we drop the assumption of independence about the
X; and assume instead that the (X, Y) channel is memoryless, that is,

n
PO dalx o x) = T Gl (1.16)
i=1

the situation is quite different!

Theorem 1.9 [fX=(Xy,..., X,) and Y = (Y1, ..., Y,) are random vec-
tors and the channel is memoryless, that is, if (1.16) holds, then

n

IX; Y) <) I(X;; Vo).

i=1

Proof Again letting E denote expectation on the joint sample space of X and
Y, we have

I(X;Y) = E[logm] (see Eq. (1.7))

p(y)

_ E[logp(y'xl) p(yn|xn)}
p(y)

by (1.16). On the other hand,

zn:I(Xi; Y) = iE{log P(J/i|xi)]
i=1 i=1

p(yi)

pyilx) ... p(anxn)]
— 1 .
E{ D - pOw)

Hence
n
IX; Y) = ) I(Xi; Yy)
i=1

_ E[log pO) - p(yn)}

p(y)

<log E [p(yl) p(yn)}

p(y)
=0





