Electrodynamics of Solids
Optical Properties of Electrons in Matter

Martin Dressel
Stuttgart
and
George Grüner
Los Angeles
Contents

Preface page xi

1 **Introduction** 1

PART ONE: CONCEPTS AND PROPERTIES 7

 Introductory remarks 7
 General books and monographs 8

2 **The interaction of radiation with matter** 9

 2.1 Maxwell’s equations for time-varying fields 9
 2.1.1 Solution of Maxwell’s equations in a vacuum 10
 2.1.2 Wave equations in free space 13
 2.2 Propagation of electromagnetic waves in the medium 15
 2.2.1 Definitions of material parameters 15
 2.2.2 Maxwell’s equations in the presence of matter 17
 2.2.3 Wave equations in the medium 19
 2.3 Optical constants 21
 2.3.1 Refractive index 21
 2.3.2 Impedance 28
 2.4 Changes of electromagnetic radiation at the interface 31
 2.4.1 Fresnel’s formulas for reflection and transmission 31
 2.4.2 Reflectivity and transmissivity by normal incidence 34
 2.4.3 Reflectivity and transmissivity for oblique incidence 38
 2.4.4 Surface impedance 42
 2.4.5 Relationship between the surface impedance and the reflectivity 44
 References 45
 Further reading 46

3 **General properties of the optical constants** 47

 3.1 Longitudinal and transverse responses 47
Contents

3.1 General considerations
 3.1.1 General considerations 47
 3.1.2 Material parameters 49
 3.1.3 Response to longitudinal fields 52
 3.1.4 Response to transverse fields 55
 3.1.5 The anisotropic medium: dielectric tensor 55
 3.2 Kramers–Kronig relations and sum rules 56
 3.2.1 Kramers–Kronig relations 57
 3.2.2 Sum rules 65
 References 69
 Further reading 70

4 The medium: correlation and response functions
 4.1 Current–current correlation functions and conductivity 72
 4.1.1 Transverse conductivity: the response to the vector potential 73
 4.1.2 Longitudinal conductivity: the response to the scalar field 78
 4.2 The semiclassical approach 79
 4.3 Response function formalism and conductivity 81
 4.3.1 Longitudinal response: the Lindhard function 81
 4.3.2 Response function for the transverse conductivity 87
 References 91
 Further reading 91

5 Metals
 5.1 The Drude and the Sommerfeld models 93
 5.1.1 The relaxation time approximation 93
 5.1.2 Optical properties of the Drude model 95
 5.1.3 Derivation of the Drude expression from the Kubo formula 105
 5.2 Boltzmann’s transport theory 106
 5.2.1 Liouville’s theorem and the Boltzmann equation 107
 5.2.2 The \(q = 0 \) limit 110
 5.2.3 Small \(q \) limit 110
 5.2.4 The Chambers formula 112
 5.2.5 Anomalous skin effect 113
 5.3 Transverse response for arbitrary \(q \) values 115
 5.4 Longitudinal response 120
 5.4.1 Thomas–Fermi approximation: the static limit for \(q < k_F \) 120
 5.4.2 Solution of the Boltzmann equation: the small \(q \) limit 122
 5.4.3 Response functions for arbitrary \(q \) values 123
 5.4.4 Single-particle and collective excitations 130
 5.5 Summary of the \(\omega \) dependent and \(q \) dependent response 132
 References 133
 Further reading 134
Contents

6 Semiconductors 136

6.1 The Lorentz model 137
 6.1.1 Electronic transitions 137
 6.1.2 Optical properties of the Lorentz model 141
6.2 Direct transitions 148
 6.2.1 General considerations on energy bands 148
 6.2.2 Transition rate and energy absorption for direct transitions 150
6.3 Band structure effects and van Hove singularities 153
 6.3.1 The dielectric constant below the bandgap 154
 6.3.2 Absorption near to the band edge 155
6.4 Indirect and forbidden transitions 159
 6.4.1 Indirect transitions 159
 6.4.2 Forbidden transitions 162
6.5 Excitons and impurity states 163
 6.5.1 Excitons 163
 6.5.2 Impurity states in semiconductors 165
6.6 The response for large ω and large q 169
References 171
Further reading 171

7 Broken symmetry states of metals 173

7.1 Superconducting and density wave states 173
7.2 The response of the condensates 179
 7.2.1 London equations 180
 7.2.2 Equation of motion for incommensurate density waves 181
7.3 Coherence factors and transition probabilities 182
 7.3.1 Coherence factors 182
 7.3.2 Transition probabilities 184
7.4 The electrodynamics of the superconducting state 186
 7.4.1 Clean and dirty limit superconductors, and the spectral weight 187
 7.4.2 The electrodynamics for $q \neq 0$ 188
 7.4.3 Optical properties of the superconducting state: the Mattis–Bardeen formalism 190
7.5 The electrodynamics of density waves 196
 7.5.1 The optical properties of charge density waves: the Lee–Rice–Anderson formalism 197
 7.5.2 Spin density waves 198
 7.5.3 Clean and dirty density waves and the spectral weight 199
References 202
Further reading 203
PART TWO: METHODS 205
 Introductory remarks 205
 General and monographs 206

8 Techniques: general considerations 207
 8.1 Energy scales 207
 8.2 Response to be explored 208
 8.3 Sources 210
 8.4 Detectors 212
 8.5 Overview of relevant techniques 214
 References 215
 Further reading 216

9 Propagation and scattering of electromagnetic waves 217
 9.1 Propagation of electromagnetic radiation 218
 9.1.1 Circuit representation 218
 9.1.2 Electromagnetic waves 221
 9.1.3 Transmission line structures 223
 9.2 Scattering at boundaries 230
 9.2.1 Single bounce 231
 9.2.2 Two interfaces 233
 9.3 Resonant structures 234
 9.3.1 Circuit representation 236
 9.3.2 Resonant structure characteristics 238
 9.3.3 Perturbation of resonant structures 241
 References 243
 Further reading 243

10 Spectroscopic principles 245
 10.1 Frequency domain spectroscopy 246
 10.1.1 Analysis 246
 10.1.2 Methods 247
 10.2 Time domain spectroscopy 250
 10.2.1 Analysis 251
 10.2.2 Methods 253
 10.3 Fourier transform spectroscopy 258
 10.3.1 Analysis 260
 10.3.2 Methods 264
 References 267
 Further reading 267
Contents

11 Measurement configurations 269
 11.1 Single-path methods 270
 11.1.1 Radio frequency methods 271
 11.1.2 Methods using transmission lines and waveguides 273
 11.1.3 Free space: optical methods 275
 11.1.4 Ellipsometry 278
 11.2 Interferometric techniques 281
 11.2.1 Radio frequency bridge methods 281
 11.2.2 Transmission line bridge methods 282
 11.2.3 Mach–Zehnder interferometer 285
 11.3 Resonant techniques 286
 11.3.1 Resonant circuits of discrete elements 288
 11.3.2 Microstrip and stripline resonators 288
 11.3.3 Enclosed cavities 290
 11.3.4 Open resonators 291
 References 295
 Further reading 297

PART THREE: EXPERIMENTS 299
 Introductory remarks 299
 General books and monographs 300

12 Metals 301
 12.1 Simple metals 301
 12.1.1 Comparison with the Drude–Sommerfeld model 302
 12.1.2 The anomalous skin effect 312
 12.1.3 Band structure and anisotropy effects 316
 12.2 Effects of interactions and disorder 319
 12.2.1 Impurity effects 319
 12.2.2 Electron–phonon and electron–electron interactions 321
 12.2.3 Strongly disordered metals 329
 References 336
 Further reading 337

13 Semiconductors 339
 13.1 Band semiconductors 339
 13.1.1 Single-particle direct transitions 340
 13.1.2 Forbidden and indirect transitions 353
 13.1.3 Excitons 354
 13.2 Effects of interactions and disorder 357
 13.2.1 Optical response of impurity states of semiconductors 357
Introduction

Ever since Euclid, the interaction of light with matter has aroused interest – at least among poets, painters, and physicists. This interest stems not so much from our curiosity about materials themselves, but rather to applications, should it be the exploration of distant stars, the burning of ships of ill intent, or the discovery of new paint pigments.

It was only with the advent of solid state physics about a century ago that this interaction was used to explore the properties of materials in depth. As in the field of atomic physics, in a short period of time optics has advanced to become a major tool of condensed matter physics in achieving this goal, with distinct advantages – and some disadvantages as well – when compared with other experimental tools.

The focus of this book is on optical spectroscopy, defined here as the information gained from the absorption, reflection, or transmission of electromagnetic radiation, including models which account for, or interpret, the experimental results. Together with other spectroscopic tools, notably photoelectron and electron energy loss spectroscopy, and Raman together with Brillouin scattering, optics primarily measures charge excitations, and, because of the speed of light exceeding substantially the velocities of various excitations in solids, explores in most cases the $\Delta q = 0$ limit. While this is a disadvantage, it is amply compensated for by the enormous spectral range which can be explored; this range extends from well below to well above the energies of various single-particle and collective excitations.

The interaction of radiation with matter is way too complex to be covered by a single book; so certain limitations have to be made. The response of a solid at position \mathbf{r} and time t to an electric field $\mathbf{E}(\mathbf{r}', t')$ at position \mathbf{r}' and time t' can be written as

$$D_i(\mathbf{r}, t) = \int \int \tilde{\epsilon}_{ij}(\mathbf{r}, \mathbf{r}', t, t') E_j(\mathbf{r}', t') \, dt' \, d\mathbf{r}' \quad (1.0.1)$$
where i and j refer to the components of the electric field \mathbf{E} and displacement field \mathbf{D}; thus $\tilde{\epsilon}_{ij}$ is the so-called dielectric tensor. For homogeneous solids, the response depends only on $\mathbf{r} - \mathbf{r}'$ (while time is obviously a continuous variable), and Eq. (1.0.1) is reduced to

$$D_i(\mathbf{r}, t) = \int \int \tilde{\epsilon}_{ij}(\mathbf{r} - \mathbf{r}', t - t') E_j(\mathbf{r}', t') \, dt' \, dr' \quad .$$

We further assume linear response, thus the displacement vector \mathbf{D} is proportional to the applied electric field \mathbf{E}. In the case of an alternating electric field of the form

$$\mathbf{E}(\mathbf{r}, t) = E_0 \exp\{i(\mathbf{q} \cdot \mathbf{r} - \omega t)\}$$

(1.0.3)

the response occurs at the same frequency as the frequency of the applied field with no higher harmonics. Fourier transform then gives

$$D_i(\mathbf{q}, \omega) = \tilde{\epsilon}_{ij}(\mathbf{q}, \omega) E_j(\mathbf{q}, \omega)$$

(1.0.4)

with the complex dielectric tensor assuming both a wavevector and frequency dependence. For $\tilde{\epsilon}_{ij}(\mathbf{r} - \mathbf{r}', t - t')$ real, the \mathbf{q} and ω dependent dielectric tensor obeys the following relation:

$$\tilde{\epsilon}_{ij}(\mathbf{r} - \mathbf{r}', t - t') = \tilde{\epsilon}_{ij}^*(\mathbf{r} - \mathbf{r}', t - t') \quad ,$$

where the star (*) refers to the complex conjugate. Only cubic lattices will be considered throughout most parts of the book, and then $\hat{\epsilon}$ is a scalar, complex quantity.

Of course, the response could equally well be described in terms of a current at position \mathbf{r} and time t, and thus

$$J(\mathbf{r}, t) = \int \int \hat{\sigma}(\mathbf{r}, \mathbf{r}', t, t') E(\mathbf{r}', t') \, dt' \, dr' \quad$$

(1.0.5)

leading to a complex conductivity tensor $\hat{\sigma}(\mathbf{q}, \omega)$ in response to a sinusoidal time-varying electric field. The two response functions are related by

$$\hat{\epsilon}(\mathbf{q}, \omega) = 1 + \frac{4\pi i}{\omega} \hat{\sigma}(\mathbf{q}, \omega) \quad ;$$

(1.0.6)

this follows from Maxwell’s equations.

Except for a few cases we also assume that there is a local relationship between the electric field $\mathbf{E}(\mathbf{r}, t)$ and $\mathbf{D}(\mathbf{r}, t)$ and also $\mathbf{j}(\mathbf{r}, t)$, and while these quantities may display well defined spatial dependence, their spatial variation is identical; with

$$\frac{\mathbf{J}(\mathbf{r})}{\mathbf{E}(\mathbf{r})} = \hat{\sigma} \quad \text{and} \quad \frac{\mathbf{D}(\mathbf{r})}{\mathbf{E}(\mathbf{r})} = \hat{\epsilon}$$

(1.0.7)

two spatially independent quantities. This then means that the Fourier transforms
of $\hat{\epsilon}$ and $\hat{\sigma}$ do not have $q \neq 0$ components. There are a few notable exceptions when some important length scales of the problem, such as the mean free path ℓ in metals or the coherence length ξ_0 in superconductors, are large and exceed the length scales set by the boundary problem at hand. The above limitations then reduce

$$\hat{\sigma}(\omega) = \sigma_1(\omega) + i\sigma_2(\omega) \quad \text{and} \quad \hat{\epsilon}(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$$

(1.0.8)

to scalar and q independent quantities, with the relationship between $\hat{\epsilon}$ and $\hat{\sigma}$ as given before. We will also limit ourselves to non-magnetic materials, and will assume that the magnetic permeability $\mu_1 = 1$ with the imaginary part $\mu_2 = 0$.

We will also make use of what is called the semiclassical approximation. The interaction of charge e_i with the radiation field is described as the Hamiltonian

$$\mathcal{H} = \frac{1}{2m} \sum_i \left(p_i - \frac{e_i}{c} A(r_i) \right)^2 ,$$

(1.0.9)

and while the electronic states will be described by appropriate first and second quantization, the vector potential A will be assumed to represent a classical field. We will also assume the so-called Coulomb gauge, by imposing a condition

$$\nabla \cdot A = 0 ;$$

(1.0.10)

this then implies that A has only transverse components, perpendicular to the wavevector q.

Of course one cannot do justice to all the various interesting effects which arise in the different forms of condensed matter – certain selections have to be made, this being influenced by our prejudices. We cover what is loosely called the electrodynamics of electron states in solids. As the subject of what can be termed electrodynamics is in fact the response of charges to electromagnetic fields, the above statement needs clarification. Throughout the book our main concern will be the optical properties of electrons in solids, and a short guide of the various states which may arise is in order.

In the absence of interaction with the underlying lattice, and also without electron–electron or electron–phonon interactions, we have a collection of free electrons obeying – at temperatures of interest – Fermi statistics, and this type of electron liquid is called a Fermi liquid. Interactions between electrons then lead to an interacting Fermi liquid, with the interactions leading to the renormalization of the quasi-particles, leaving, however, their character unchanged. Under certain circumstances, notably when the electron system is driven close to an instability, or when the electronic structure is highly anisotropic, this renormalized Fermi-liquid picture is not valid, and other types of quantum liquids are recovered. The – not too appealing – notion of non-Fermi liquids is usually adopted when deviations
from a Fermi liquid are found. In strictly one dimension (for example) the nature of the quantum liquid, called the Luttinger liquid, with all of its implications, is well known. Electron–phonon interactions also lead to a renormalized Fermi liquid.

If the interactions between the electrons or the electron–phonon interactions are of sufficient strength, or if the electronic structure is anisotropic, phase transitions to what can be termed electronic solids occur. As is usual for phase transitions, the ordered state has a broken symmetry, hence the name broken symmetry states of metals. For these states, which are called charge or spin density wave states, translational symmetry is broken and the electronic charge or spin density assumes a periodic variation – much like the periodic arrangement of atoms in a crystal. The superconducting state has a different, so-called broken gauge symmetry. Not surprisingly for these states, single-particle excitations have a gap – called the single-particle gap – a form of generalized rigidity. As expected for a phase transition, there are collective modes associated with the broken symmetry state which – as it turns out – couple directly to electromagnetic fields. In addition, for these states the order parameter is complex, with the phase directly related to the current and density fluctuations of the collective modes.

Disorder leads to a different type of breakdown of the Fermi liquid. With increasing disorder a transition to a non-conducting state where electron states are localized may occur. Such a transition, driven by an external parameter (ideally at $T = 0$ where only quantum fluctuations occur) and not by the temperature, is called a quantum phase transition, with the behavior near to the critical disorder described – in analogy to thermal phase transitions – by various critical exponents. This transition and the character of the insulating, electron glass state depend on whether electron–electron interactions are important or not. In the latter case we have a Fermi glass, and the former can be called a Coulomb glass, the two cases being distinguished by temperature and frequency dependent excitations governed by different exponents, reflecting the presence or absence of Coulomb gaps.

A different set of states and properties arises when the underlying periodic lattice leads to full and empty bands, thus to semiconducting or insulating behavior. In this case, the essential features of the band structure can be tested by optical experiments. States beyond the single-electron picture, such as excitons, and also impurity states are essential features here. All this follows from the fundamental assumption about lattice periodicity and the validity of Bloch’s theorem. When this is not relevant, as is the case for amorphous semiconductors, localized states with a certain amount of short range order are responsible for the optical properties.

The response of these states to an electromagnetic field leads to dissipation, and this is related to the fluctuations which arise in the absence of driving fields. The relevant fluctuations are expressed in terms of the current–current
or density–density correlation functions, related to the response through the celebrated fluctuation-dissipation theorem. The correlation functions in question can be derived using an appropriate Hamiltonian which accounts for the essential features of the particular electron state in question. These correlations reflect and the dissipation occurs through the elementary excitations. Single-particle excitations, the excitation of the individual quasi-particles, may be the source of the dissipation, together with the collective modes which involve the cooperative motion of the entire system governed by the global interaction between the particles. Electron–hole excitations in a metal are examples of the former, plasmons and the response of the broken symmetry ground state are examples of the latter. As a rule, these excitations are described in the momentum space by assuming extended states and excitations with well defined momenta. Such excitations may still exist in the case of a collection of localized states; here, however, the excitations do not have well defined momenta and thus restrictions associated with momentum conservation do not apply.

Other subjects, interesting in their own right, such as optical phonons, dielectrics, color centers (to name just a few) are neglected; and we do not discuss charge excitations in insulators – vast subjects with interesting properties. Also we do not discuss the important topic of magneto-optics or magneto-transport phenomena, which occur when both electric and magnetic fields are applied.

The organization of the book is as follows: underlying theory, techniques, and experimental results are discussed as three, inter-relating parts of the same endeavor. In Part 1 we start with the necessary preliminaries: Maxwell’s equations and the definition of the optical constants. This is followed by the summary of the propagation of light in the medium, and then by the discussion of phenomena which occur at an interface; this finally brings us to the optical parameters which are measured by experiment. The three remaining chapters of Part 1 deal with the optical properties of metals, semiconductors, and the so-called broken symmetry states of metals. Only simple metals and semiconductors are dealt with here, and only the conventional broken symmetry states (such as BCS superconductors) will be covered in the so-called weak coupling limit. In these three chapters three different effects are dominant: dynamics of quasi-free electrons, absorption due to interband processes, and collective phenomena.

In Part 2 the experimental techniques are summarized, with an attempt to bring out common features of the methods which have been applied at vastly different spectral ranges. Here important similarities exist, but there are some important differences as well. There are three spectroscopic principles of how the response in a wide frequency range can be obtained: measurements can be performed in the frequency domain, the time domain, or by Fourier transform technique. There are also different ways in which the radiation can interact with the material studied:
Introduction

simply transmission or reflection, or changes in a resonance structure, can be utilized.

In Part 3 experimental results are summarized and the connection between theory and experiment is established. We first discuss simple scenarios where the often drastic simplifications underlying the theories are, in the light of experiments, justified. This is followed by the discussion of modern topics, much in the limelight at present. Here also some hand-waving arguments are used to expound on the underlying concepts which (as a rule) by no means constitute closed chapters of condensed matter physics.