DETERMINISTIC OBSERVATION
THEORY AND APPLICATIONS

JEAN-PAUL GAUTHIER

IVAN KUPKA

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface ix

1 Introduction 1
 1. Systems under Consideration 1
 2. What Is Observability? 2
 3. Summary of the Book 2
 4. The New Observability Theory Versus the Old Ones 3
 5. A Word about Prerequisites 4
 6. Comments 5

Part I. Observability and Observers 9

2 Observability Concepts 9
 1. Infinitesimal and Uniform Infinitesimal Observability 9
 2. The Canonical Flag of Distributions 11
 3. The Phase-Variable Representation 12
 4. Differential Observability and Strong Differential Observability 14
 5. The Trivial Foliation 15
 6. Appendix: Weak Controllability 19

3 The Case $d_{y} \leq d_{u}$ 20
 1. Relation Between Observability and Infinitesimal Observability 20
 2. Normal Form for a Uniform Canonical Flag 22
 3. Characterization of Uniform Infinitesimal Observability 24
 4. Complements 26
 5. Proof of Theorem 3.2 29
Contents

4 The Case $d_y > d_u$
1. Definitions and Notations 36
2. Statement of Our Differential Observability Results 37
3. Proof of the Observability Theorems 40
4. Equivalence between Observability and Observability for Smooth Inputs 42
5. The Approximation Theorem 51
6. Complements 57
7. Appendix 58

5 Singular State-Output Mappings 68
1. Assumptions and Definitions 68
2. The Ascending Chain Property 71
3. The Key Lemma 73
4. The $ACP(N)$ in the Controlled Case 78
5. Globalization 81
6. The Controllable Case 84

6 Observers: The High-Gain Construction 86
1. Definition of Observer Systems and Comments 87
2. The High-Gain Construction 95
3. Appendix 120

Part II. Dynamic Output Stabilization and Applications 123
7 Dynamic Output Stabilization 125
1. The Case of a Uniform Canonical Flag 126
2. The General Case of a Phase-Variable Representation 132
3. Complements 141

8 Applications 143
1. Binary Distillation Columns 143
2. Polymerization Reactors 163

Appendix 179
Solutions to Part I Exercises 195
Bibliography 217
Index of Main Notations 221
Index 224
1

Introduction

In this book, we present a new, general, and complete theory of observability and observation, deriving from our papers [18, 19, 32]. This theory is entirely in the deterministic setting. Let us mention here that there are several papers preceding these three that exploit the same basic ideas with weaker results. See [16, 17], in collaboration with H. Hammouri.

A list of all main notations is given in an index, page 221.

1. Systems under Consideration

We are concerned with general nonlinear systems of the form:

\[
\begin{align*}
\frac{dx}{dt} &= f(x, u), \\
y &= h(x, u),
\end{align*}
\]

(1)

typically denoted by \(\Sigma \), where \(x \), the state, belongs to \(X \), an \(n \)-dimensional, connected, Hausdorff paracompact differentiable manifold, \(y \), the output, takes values in \(\mathbb{R}^{dy} \), and \(u \), the control variable, takes values in \(U \subset \mathbb{R}^{du} \).

For the sake of simplicity, we take \(U = \mathbb{R}^{du} \) or \(U = I^{du} \), where \(I \subset \mathbb{R} \) is a closed interval. But typically \(U \) could be any closed submanifold of \(\mathbb{R}^{du} \) with a boundary, a nonempty interior, and possibly with corners. Unless explicitly stated, \(X \) has no boundary.

The set of systems will be denoted by \(S = F \times H \), where \(F \) is the set of \(u \)-parametrized vector fields \(f \), and \(H \) is the set of functions \(h \). In general, except when explicitly stated, \(f \) and \(h \) are \(C^\infty \). However, depending on the context, we will have to consider also analytic systems \((C^\omega) \), or \(C^r \) systems, for some \(r \in \mathbb{N} \). Thus, if necessary, the required degree of differentiability will be stated, but in most cases the notations will remain \(S, F, H \).

The simplest case is when \(U \) is empty, the so-called “uncontrolled case.” In that situation, we will be able to prove more results than in the general case.
Introduction

Usually, in practical situations, the output function h of the system does not depend on u. Unfortunately, from the theoretical point of view, this assumption is very awkward and leads to clumsy statements. For that reason, we will currently assume that h depends on the control u.

2. What Is Observability?
The preliminary definition we give here is the oldest one; it comes from the basic theory of linear control systems.

Roughly speaking, “observability” stands for the possibility of reconstructing the full trajectory from the observed data, that is, from the output trajectory in the uncontrolled case, or from the couple (output trajectory, control trajectory) in the controlled case. In other words, observability means that the mapping

$$\text{initial state} \rightarrow \text{output trajectory}$$

is injective, for all fixed control functions. More precise definitions will be given later in the book.

3. Summary of the Book
1. When the number d_y of observations is smaller than or equal to the number d_u of controls, then the relevant observability property is very rigid and is not stable under small perturbations, for germs of systems. Because of that rigidity, this observability property can be given a simple geometric characterization. This is the content of the paper [18] and the purpose of Chapter 3.

2. If, on the contrary, $d_y > d_u$, a remarkable phenomenon happens: The observability becomes generic, in a very strong sense, and for very general classes of control functions.

In Chapter 4, we state and prove a cornucopia of genericity results about observability as we define it. The most important of these results are contained in paper [19]. Some of these results present real technical difficulties.

3. The singular case: in the preceding two cases, the initial state \rightarrow output trajectory mapping is regular. What happens if it becomes singular? This problem is too complex. In classical singularity theory, there is a useful and manageable concept of mapping with singularities: that of a “finite mapping.” It is interesting that, in the uncontrolled analytic case, this concept can be extended to our initial state \rightarrow output trajectory mappings, according to a very original idea of P. Jouan. This idea leads to the very interesting results of paper [32]. The controlled case is very different: If the system is singular, then it is not controllable. In this case, we also have several results,
4. The New Observability Theory Versus the Old Ones

As we have said, observability is the injectivity of the mapping: \(\text{initial state} \rightarrow \text{output trajectory} \). However, the concept of injectivity per se is
very hard to handle mathematically because it is unstable. Hence, we have to introduce stronger concepts of observability, for example adding to the injectivity the condition of immersivity (infinitesimal injectivity), as in the classical theory of differentiable mappings.

In this book, we haven’t discussed any of the other approaches to observability that have been proposed elsewhere, and we haven’t referenced any of them. The reason for this is simple: We have no use for either the concepts nor the results of these other approaches.

In fact, we claim that our approach to observability theory, which is entirely new, is far superior to any of the approaches proposed so far.

Since we cannot discuss all of them, let us focus on the most popular: the output injection method.

The output injection method is in the spirit of the feedback linearization method (popular for the control of nonlinear systems). As for the feedback linearization, one tries to go back to the well-established theory of linear systems. First, one characterizes the systems that can be written as a linear system, plus a perturbation depending on the outputs only (in some coordinates). Second, for these systems only, one applies slight variations of the standard linear constructions of observer systems. This approach suffers from terminal defects.

A. It applies to an extremely small class of systems only. In precise mathematical terms, it means the following. In situation 2 above, where observability is generic, it applies to a class of systems of infinite codimension. In case 1, where the observability is nongeneric, it also applies to an infinite codimension subset of the set of observable systems.

B. Basically, the approach ignores the crucial distinction between the two cases: 1. $d_y \leq d_u$; 2. $d_y > d_u$.

C. The approach does not take into account generic singularities, and it is essentially local in scope.

Of course, these defects have important practical consequences in terms of sensitivity. In particular, in case 2, where the observability property is stable, the method is unstable.

5. A Word about Prerequisites

In this book, we have tried to keep the mathematical prerequisites to a strict minimum. What we need are the following mathematical tools: transversality theory, stratification theory and subanalytic sets, a few facts from several complex variables theory, center manifold theory, and Lyapunov’s direct and inverse theorems.
6. Comments

For the benefit of the reader, a summary of the results needed is provided in the Appendix. It is accessible to those with only a modest mathematical background.

6. Comments

6.1. Comment about the Dynamic Output Stabilization Problem

At several places in the book, we make the assumption that the state space X, is just the Euclidean space R^n. If one wants only to estimate the state, this is not a reasonable assumption: the state space can be anything. However, for the dynamic output stabilization of systems that are state-feedback stabilizable, it is a reasonable assumption because the basin of attraction of an asymptotically stable equilibrium point of a vector field is diffeomorphic to R^n (see [51]).

6.2. Historical Comments

6.2.1. About “Observability”

The observability notion was introduced first in the context of linear systems theory. In this context, the Luenberger observer, and the Kalman filter were introduced, in the deterministic and stochastic settings, respectively.

For linear systems, the observability notion is independent of the control function (either the initial \rightarrow state \rightarrow output \rightarrow trajectory mapping is injective for all control functions, or it is not injective for each control function). This is no longer true for nonlinear systems. Moreover, as we show in this book, in the general case where $d_y \leq d_u$, observability (for all inputs) is not at all a generic property. For these reasons (and certainly also just for tractability), several weaker different notions of observability have been introduced, which are generic and which agree with the old observability notion in the special case of linear systems. In this setting, there is the pioneer work [24]. As we said, these notions are totally inadequate for our purposes, and we just forget about them.

6.2.2. About Universal Inputs

Let us say that a control function separates two states, if the corresponding output trajectories, from these two initial states, do not coincide.

For a nonlinear system, a universal input is a control function that separates all the couples of states that can be separated by some control.

We want to mention a pioneer work by H. J. Sussmann [47], in which it is proved, roughly speaking, that “universal inputs do exist.” For this purpose, the author made use of the properties of subanalytic sets, in a spirit very similar to the one in this book.
6

Introduction

6.2.3. About the Applications

In Chapter 8, we present two applications from chemical engineering science. There are already several other applications of our theory in many fields, but we had to choose.

The two applications we have chosen look rather convincing, because they are not “academic,” and some refinements of the theory are really used. Moreover, these two applications, besides their illustrative character, are very important in practice and have been addressed by research workers in control theory, using other techniques, for many years. It is hard to give an exhaustive list of other studies (related to control and observation theory) on distillation columns and polymerization reactors. However, let us give a few references that are significant:

For distillation columns: [58], [61], [62].
For polymerization reactors: [56], [57], [60], [59].

Regarding distillation columns, it would be very interesting (and probably very difficult) to study the case of azeotropic distillations, which is not addressed in this volume. It seems that all the theory collapses in this case of azeotropic distillations.