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Chapter 1
Introduction

In this chapter we shall introduce some basic concepts of dynamics. In order
to illustrate these we shall consider just one example. This example is a simple
linear model. Why such a linear equation explains what is of interest we shall
not consider here. Our main aim is to define and elaborate on dynamic
concepts that we shall use throughout this book. Our second aim is to show
how such a model can be set up on a spreadsheet and then investigated
interactively.

1.1 Definitions and concepts

Dynamics is concerned with how things change over time. The passage of time
is a crucial element in any dynamic process. Whether a variable remains the
same value at two points in time or whether it is different is not the essential
issue, what matters is that time has elapsed between the value of the variable on
the first occasion and the value it takes on the second. Time cannot be reversed.

In dynamics we must specify the point in time for any given variable. If we
are concerned about national income, price or profits we need to specify the
level of income at a point in time, the price at a point in time and profits at
some point in time. As time moves on the value these variables take may
change. We will specify time in this book by referring to periods: period 0,
usually referring to the initial point in time, then period 1, period 2, and so on.
Consequently we shall denote this =0, 1, 2, etc. If our variable of interest is
price, say, which we denote as p, then p(0) refers to the price at time period 0,
the present, p(1) the price at time period 1, p(2) the price at time period 2, and
so on. Unfortunately, referring to price in this way allows us to refer only to
future prices. Sometimes we wish to talk about what the price was in the pre-
vious period, or the price two periods ago. In order to do this we sometimes
say that p() is the price in period ¢, the price now, p(¢+ 1) the price in the next
period, and p(¢ + 2) the price two periods from now. Doing this then allows us
to refer to price in the previous period, p(¢— 1), and the price two periods in
the past, p(z—2), etc. Which we use depends on what we are discussing, but
the context should make it quite clear. If our model is continuous, then p(z) is
a continuous function of time. There is a price for each instant of time. We con-
sider continuous models in section 1.9.

How a variable changes over time depends on what determines that vari-
able. What determines a variable is formulated by means of models. In other
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words, a model is an explanation of how the variable comes about: how it takes
on the value that it does, how it is related to other variables, and how it changes
over time. A model that refers to no passage of time is called a static model.
Elementary economics has many static models. The model of demand and
supply, which determines the equilibrium price, is a typical static model.
Equilibrium price is determined by the equality between what is demanded
and what is supplied: where the demand curve intersects the supply curve. If
demand rises, and the demand curve shifts to the right, then equilibrium price
will rise. When we compare one equilibrium with another we are concerned
with comparative statics. We are simply comparing the two or more equilib-
rium points. How the variable got to the new equilibrium is not really consid-
ered. To do this would require some dynamic process to be specified. Usually
in the theory of demand and supply the movement is assumed to be instanta-
neous. Or, put another way, that adjustment all happens in the same time
period, so that it is unnecessary to specify time. On the other hand, if we wish
to specify the time path of a variable between one equilibrium point and
another, then we must set out a dynamic model which explicitly explains the
movement of the variable over time. In other words, a dynamic model must
involve time explicitly.

Notice here that the model comes from the subject. It comes from our
understanding of how the world works. The world is a complex place and we
simplify by forming a model. The model sets out the relationships between the
crucial elements of the system we are interested in. Models involve abstrac-
tions and simplifications. An economic model will concentrate on the economic
aspects of a system while a sociological model would concentrate on the social
aspects of the same system. In this book we are concerned only with economic
models. The subject matter of economics is usually divided into microeconom-
ics and macroeconomics. Microeconomics is concerned with individual units,
such as choices made by individuals, profits made by firms, decisions about
supplying labour at different wage rates, and so on. Macroeconomics is con-
cerned with aggregate variables at the economy level such as unemployment,
national income and the general price level. A large part of studying econom-
ics is coming to an understanding of microeconomic models and macroeco-
nomic models. In elementary courses in economics these models are usually
static models. Time does not enter them explicitly and attention is usually
directed towards the determination of equilibrium conditions.

An equilibrium of a model is where the system settles down and, once there,
there is no reason for the system to move. It is often thought of in mechanical
terms as a balance of forces. In demand and supply, for example, demand rep-
resents one force and supply another. When demand equals supply then the
forces are in balance and the system is in equilibrium. The price that estab-
lishes this balance of force is then referred to as the equilibrium price. Much
attention in economics is paid to what determines the equilibrium of a model
and how that equilibrium changes when some feature of the system changes.
But most elementary textbooks stop at this point. But consider for a moment.
To establish that a system has an equilibrium just establishes whether an equi-
librium exists or not. It cannot guarantee that the system will ever achieve that
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equilibrium. When attention is directed at the attainment or not of the equi-
librium we are dealing with its stability or instability. We refer to this simply
as the condition of stability of the equilibrium. But to consider the stability of
an equilibrium we need to know what happens to the variable over time. If a
variable over time tends towards the equilibrium value, then we say it is stable.
If a variable moves away from the equilibrium value then we say it is unstable.
(We shall explain this more formally later in the book.) Notice that it is the
stability of the equilibrium which we are referring to. Furthermore, any dis-
cussion of stability must involve the passage of time explicitly, and so stability
is a dynamic consideration of the model. To illustrate this in simple terms take
a bowl and (gently) drop an egg down the side. The egg will slip down the side,
rise up the other, and steadily come to rest at the bottom of the bowl. The
movements around the base get smaller and smaller over time. The base of the
bowl represents a stable equilibrium. We know it is an equilibrium because the
egg stops moving, and will remain there until it is disturbed. Furthermore, if
gently moved a little from the base, it will soon return there. Now place the egg
carefully on a bowl placed upside down. If placed carefully, then the egg will
remain in that position. It is equilibrium. There is a balance of forces. But
move the egg just a little and it will topple down the side of the bowl. It does
not matter which direction it is moved, once moved the egg will move away
from the top of the bowl. In other words, the top of the bowl is an unstable
equilibrium. In this book we shall be considering in some detail the stability
of equilibrium points. In this example the movement of the egg was either
towards the equilibrium or away from it. But in some systems we shall be con-
sidering it is possible for a variable to move around the equilibrium, neither
moving towards it nor away from it! Such systems exhibit oscillatory
behaviour.

Here we have introduced the reader to only some of the concepts that we
will be dealing with. It will be necessary to formalise them more carefully. We
shall do this in terms of the economic models we shall consider.

1.2 Dynamic models

Consider the following equation, which we shall assume for the moment
comes from some theory of economics explaining the variable x.

x(t+1)=3+1x(1)

Since the variable x at time 7+ 1 is related to the same variable in the previous
period we call such models recursive. This is true even if more than one time
period in the past is involved in the relationship. This recursive model is also
linear, since the equation itself is a linear equation. In more complex models
nonlinear equations can arise, but they are still recursive if they are related to
the same variable in early periods. If the relationship is for just one previous
period, then we have a first-order recursive equation; if it is for two periods, then
we have a second-order recursive equation, and so on.

Now in itself this is not sufficient to specify the time path of the variable x.

1.1
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We need to know its starting value. For the moment let this be x(0)=10.
Obviously, if this is the case then x(1)=3 +%(10) =8 and x(2)=3+ %(8) =7.
The sequence of x(¢) generated over time is then 10, 8, 7, 6.5, 6.25 ... We can
learn quite a bit from this equation. First, the change in the sequence is getting
smaller and appears to be getting close to some number. If the series was
extended for many more periods it would indicate that the series is getting
closer and closer to the number 6. Is this a coincidence? No, it is not. The
number 6 is the equilibrium of this system. Can we establish this? Yes, we can.
If the system is in equilibrium it is at rest and so the value the variable x takes
in each period is the same. Let us call this x*. Then it follows that
x(t—1)=x(f)=x", and so x*=3 + %x* or x*= 6. Mathematicians often call eq-
uilibrium points fixed points and we shall use the two terms interchangeably.
But we can say much more. From the solution we have just derived it is clear
that there is only one fixed point to this system: one equilibrium.

It is very useful to display first-order recursive systems of this type on a
diagram that highlights many features we shall be discussing. On the horizon-
tal axis we measure x(¢) and on the vertical axis we measure x(¢+ 1). Next we
draw a 45°-line. Along such a line we have the condition that x(z+ 1) = x(¢).
This means that any such equilibrium point, any fixed point of the system,
must lie somewhere on this line. Next we draw the equation 3 + %x(l). This is
just a straight line with intercept 3 and slope % For this exercise we assume a
continuous relationship. The situation is shown in figure 1.1. It is quite clear
from this figure that the line 3 +%x(l) cuts the 45°-line at the value 6, which
satisfies the condition

x(t+1)=x(t)=x"=6

It is also quite clear from figure 1.1 that this line can cut the 45°-line in only
one place. This means that the equilibrium point, the fixed point of the system,
is unique.

Given the starting value of x(0) =10, the next value is found from a point
on the line, namely x(1)=3 +%x(0) =3 +%(10) = 8. At this stage the value of
x(1) is read on the vertical axis. But if we move horizontally across to the 45°-
line, then we can establish this same value on the horizontal axis. Given this
value of x(1) on the horizontal axis, then x(2) is simply read off from the
equation once again, namely x(2)=3+ %x(l) =3+ %(8) =7. Continuing to
perform this operation will take the system to the equilibrium point x*= 6. The
line pattern that emerges is referred to as a cobweb. We shall consider these in
more detail in chapter 2.

It would appear on the face of it that the fixed point x*= 6 is a stable fixed
point, in the sense that the sequence starting at x(0) = 10 converges on it. But
we must establish that this is true for other starting values. This may have been
an exception! Suppose we take a starting value below the equilibrium point,
say x(0)=3. If we do this, the sequence that arises is 3, 4.5, 5.25, 5.625 ... So
once again we note that the sequence appears to be converging on the fixed
point of the system. This is also shown in figure 1.1. It is very easy to establish
that no matter what the starting value for the variable x, the system will over
time converge on the fixed point x*= 6. Not only is this fixed point stable, but
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x(t+1)

x(t+1)=x(t)

3+(L1/2) (1)

(1) x(0)
VA
3 T8 10 x(1)

also it is said to be globally stable. The word ‘global’ indicates that it does not
matter what value of x is taken as a starting value, whether near to the fixed
point or far away from the fixed point, the system will always converge on the
fixed point.

To reiterate, we have established that the system has an equilibrium point (a
fixed point), that there is only one such equilibrium point and that this fixed
point is globally stable. This is a lot of information.

1.3 Deterministic dynamical models

We can use the model we have just outlined to clarify more clearly what we
mean by a ‘dynamic model’. In doing this, however, let us generalise the initial
point. Let this be denoted x(0) = x,,, then the system can be written

x(t+1)=3+3x(t) x(0)=x,

This is a deterministic dynamical model (or deterministic dynamical system).
It is a dynamic system because it deals with the value of the variable x over
time. Given x(0) = x,,, then we can trace out the whole series of value of x(z),
for all time periods 7 from period 0 onwards. Notice that the series is crucially
dependent on the initial condition. A different initial condition, as in our
example above, will lead to quite a different series of numbers, although they
will in this instance converge on the same fixed point. Why have we referred to
it as ‘deterministic’? It is deterministic because given the same initial value, the
sequence of numbers is always the same. The initial condition and the specifi-
cation of the recursive equation determine the sequence. There is no random
element entering the series. Even if we calculate the sequence on a computer

Figure 1.1

1.2)
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(1.3)

the numbers will be identical for the same starting value. It does not matter
which software we use or which chip is contained in the computer. The whole
system is deterministic.

Let us generalise the model. Suppose

x(t+1D)=a+bx(®) x(0)=x,

This is still a deterministic dynamical system. However, to establish the
sequence of x(¢) over time we need to know the values of @ and b, which are
referred to as the parameters of the system. Parameters are constants of the
system and typically capture the structure of the problem under investigation.
They are therefore sometimes called structural parameters. We now have the
three ingredients that are necessary to specify a deterministic dynamical
system. They are:

(1) the initial condition, namely x(0) = x,
2) the values of the parameters, here the values of ¢ and b
3) the sequence of values over time of the variable x.

As we shall see later, the fact that the system is deterministic does not mean
that it may not appear like a random series. It simply means that given the
initial condition and the same values for the parameters, then the sequence of
values that are generated will always be the same no matter what they look like.

1.4 Dynamical systems on a spreadsheet

We shall frequently be displaying dynamical systems on a spreadsheet and so
we shall use our present model to illustrate how this is done. Spreadsheets are
ideal mediums for investigating recursive systems, and a great deal of dynamic
investigation can easily be undertaken with their help. Using spreadsheets
avoids the necessity of establishing complex formulas for solution paths. Of
course the more one understands about such solution methods, the more one
can appreciate the nature of the dynamic system under investigation. For indi-
viduals wishing to know such solution methods they will find these in my
Economic Dynamics (Shone, 1997).

From the very outset we want to set up the model in general terms so we can
undertake some analysis. This may involve changing the initial value and/or
changing the value of one or more of the parameters. The situation is shown
in figure 1.2. At the top of the spreadsheet we have the values of the two
parameters « and b. The values themselves are in cells C2 and C3, respectively.
When using spreadsheets it is essential to understand from the very outset that
cells can have absolute addresses or relative addresses. An absolute address is
distinguished from a relative address by having the $-sign precede the row and
column designation: C3 is a relative address while $C$3 is an absolute address.
The importance of this distinction will become clear in a moment.

In the first column we place our time periods, =0, 1, 2, etc. It is not neces-
sary to type in these values, and it would be tedious to do so if you wanted to
investigate the dynamics of a model over 500 time periods or even 2000! Most
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software packages have a ‘Fill’ command. You simply specify the initial value
(here 0) and then block down and request a fill with the incremental value
included, here an increment of 1. That is all that is necessary. It is useful to
include the time periods because it then becomes easier to graph the series x(7).
Since the row headings take place along row 5, the time periods are in cells A6,
A7, etc. Next we place in cell B6 the initial value. In this example we insert the
value 10.

At this stage it is essential to distinguish the absolute and relative address.
Since the parameter values will always be the same, we need to refer to the
absolute value in cell C2 and C3, i.e. the parameter « has the value in cell $C$2
while the parameter b has the value in cell $C$3. We now need to write a
formula in cell B7. A comparison between the algebraic formula and the
spreadsheet formula is useful here. These are for the value x(1)

=a+ bx(0)
=$C$2+8C83*B6

Notice that B6 is a relative address, it simply refers to the previous value of x,
which in this instance is the initial value 10. Also notice that it is necessary
when specifying formulas in a spreadsheet to indicate a multiplication by the
‘star’ symbol. Once this formula is entered it is replaced by the value it takes,
in this example the value 8.

The power of the spreadsheet really comes into play at this point. Consider
for a moment what we would do if we wished to calculate the value of x(2).

Figure 1.2
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(1.4)

This value is positioned in cell BS. Again comparing the algebraic specifica-
tion and the spreadsheet will help clarify what is going on

= a+bx(1)
=$C$2+$C$3*B7

Because the parameter values have absolute addresses, their values do not
change. However, B7 is a relative address and refers to the cell immediately
above. That in turn has already been calculated. But the spreadsheet formula
in cell B8 is almost identical to the formula in cell B7, the only difference is the
value which x takes, which is always the value in the cell immediately above. If
you copy the formula in cell B7 to the clipboard and paste it down for as many
periods as you are considering, the computations are immediately carried out,
with the value of x changing in the formula each time to be the value of x in
the cell immediately above. This can be done because the cell involves a rela-
tive address (along with some absolute addresses) and this relative address
keeps changing. Absolute addresses do not change. So you can paste down 13,
488 times or even 1,998 times with one click.

We have laboured this point here because it is the feature we shall be using
throughout. It also indicates that when dealing with dynamic systems on a
spreadsheet it is useful to set out the parameter values and then refer to their
absolute addresses and ensure formulas are entered and changed to include the
appropriate absolute and relative addresses. They need to be changed since all
formulas are entered with only relative addresses.

The spreadsheet involves one other computed value, namely the fixed point
of the system. Since

x*=a+bx*

then
a

T1-b

s

X

In the spreadsheet we label the fixed point as ‘xstar =" and its value is placed
in cell E2 where this value is

—$C$2/(1—$C$3)

Consequently any change to the parameter values is immediately reflected in
a change to the equilibrium value.

Note

It is always useful to check that you have entered formulas in the main
body of the computations. This can easily be accomplished. Copy the
equilibrium value to the cell containing the value for x(0), cell B6. If
your formula is correctly entered then every entry in column B should
be the same equilibrium value!

One final thing to do is to graph the series of x(¢) against time, ¢. This is
simply a X-Y plot with time on the horizontal axis and the variable x on the



Introduction

vertical axis. Here we assume you are familiar with your spreadsheet’s graph-
ing facility. Typically spreadsheets allow you either to place a graph on its own
sheet, or as a graphic item on the sheet where the calculations are being done.
This latter position is very useful when you wish to experiment with your
model because then you can see immediately the impact of changing some
element of the model. Placing it on its own sheet is useful if you wish to have
a printout of the graph. We shall experiment with the model in section 1.5. To
insert the graph, block cells A6:B21 and invoke the chart wizard. Choose the
X-Y plot and choose the option with the points joined. The wizard automat-
ically knows that the first column (cells A6:A21) is the values on the x-axis. We
have also included a title and labels for the two axes. We also have turned the
y-axis label through 90°. Figure 1.2 shows the resulting time path of x(¢). In
order to see the dynamics of the path more clearly, we have suppressed the
points and joined the points up with a continuous line. The plot readily reveals
the stability of the equilibrium, with the path of x(¢) starting at the value 10
and tending to the equilibrium value of 6.

1.5 Experimentation

It is now time to experiment with the model in order to investigate the char-
acteristics of its dynamics. We shall leave this up to the reader, and here just
indicate what you should expect to observe.

1.5.1 Changing initial conditions

We stated above that this model was globally stable; that no matter what the
initial value was, the system would always converge on the equilibrium value,
(1.4). Verify this. Try for example x(0)=3, 0, 7, —2 and 25. No matter what
value is chosen, the system will always converge on the value 6. Of course,
sometimes it takes a long time to do this. If the initial value were 100, for
example, then it takes a much longer time to reach the equilibrium value than
if the initial value were 10.

1.5.2 Changing the parameter a

Raising (lowering) the value of the parameter a raises (lowers) the equilib-
rium value. This readily follows from the formula for the equilibrium value,
but it is readily verified on the spreadsheet. It is also apparent from figure 1.1.
A rise in the parameter « is a rise in the intercept in the formula a + bx(z),
and this will intersect the 45°-line further up. A fall in the parameter a will
do the opposite. Such a change alters only the equilibrium value, the value
of the fixed point. It has no bearing on the stability properties of that fixed
point. The system remains convergent. Verify these statements by changing
the value of the parameter a and choose again the same initial values for the
variable x.
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(1.5)

1.5.3 Changing the parameter b

Retain the initial value of x(0) = 10 but now let » =1.5. Not only does the equi-
librium become negative, with value — 6, but also the system diverges away
from the equilibrium value. The variable x(7) just grows and grows. Let b =— %
The equilibrium value falls from 6 to 2. Furthermore, the values that x take
oscillate above and below this value, but converge on it. If b =— 1.5, the system
still oscillates, but the oscillations diverge away from the equilibrium value,
which is now 1.2. Finally take »=— 1. Equilibrium becomes 1.5 and the system
oscillates either side of this value indefinitely, with values — 7 and 10, and the
system neither moves towards the equilibrium or away from it.

It is apparent from these experimentations that changing the value of the
parameter b can have drastic consequences on the dynamics of this system, far
more dramatic an impact than occurs when the parameter « is altered.

Carry out some more experimentation with changes in the value of the
parameter b. What you should conclude is the following:

€] A value of 0 <b <1 leads to the system converging on the equilibrium
value.

2) A value of b=1 leads to no fixed point. (What does this imply about
the graph of x(z+ 1) against x()?)

3) A value of —1<<bh<0 leads to the system oscillating, but converging
on the equilibrium value.

4) A value of b=—1 leads to oscillations between two values, neither
moving toward nor away from the equilibrium value.

®) A value of h<—1 leads to oscillations which diverge further and

further from the equilibrium value.

All these statements are true regardless of the initial value taken by the system
(other than the equilibrium value).

What began as a very simple linear model has led to a whole diversity of
dynamic behaviour. It clearly illustrates that simply demonstrating that a
model has an equilibrium point is not sufficient. It is vital to establish whether
the system will converge or not converge on this equilibrium. It is essential to
investigate the dynamics of the model.

1.6 Difference equations
The recursive system we have been analysing, represented here as (1.5)
x(t+1)=3+1x(¢)

can be expressed in a different way which is often very revealing about its
dynamics. If we subtract from both sides the same value, then we have not
changed the characteristics of the system at all. In particular, the equilibrium
value is unchanged and the stability/instability of the system is unchanged.
Suppose, then, that we subtract from both sides the value x(¢), then we have

X(t+ 1) = x(0) = Ax(t + 1) =3+ 3x() — x(0) =3+ (3 — 1)x(1)
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This relationship is referred to as a difference equation because it expresses the
difference Ax(z+ 1) = x(z+ 1) — x(¢) as a function of x(¢). It is also a first-order
difference equation because we are considering only the first difference. The
system is shown in figure 1.3, where we place x(¢) on the horizontal axis and
Ax(t+ 1) on the vertical axis. Of particular note is that the intercept is the value
3 and the slope of the line is —%.

Let us establish that the properties of the system are the same. Consider first
the equilibrium value, the fixed point of the system. In equilibrium we know
that x(¢+1)=x(f)=x". Then it follows that Ax(z+1)=x(z+1)—x(£)=0.
Given this situation, then 0=3— %x* or x*=6. We have therefore verified
that the equilibrium value is unchanged. In terms of figure 1.3, the equilibrium
is where the equation 3 — %x(z) cuts the horizontal axis, because at this point
Ax(z+1)=0.

Now consider the stability or otherwise of the equilibrium point. Take the
typical initial value we have been using of x(0) =10 This value lies above the
equilibrium value of 6, and so Ax(¢+ 1) is negative. If Ax(z+ 1) <0 then x(z + 1)
<x(f) and so x(z) is falling over time. In fact this will continue to be so until
the fixed point is reached. If, on the other hand, we take x(0) = 3, then Ax(z+1)
>0 and so x(z+ 1)>x(¢), and hence x(¢) is rising over time. Again, this will
continue to be so until the fixed point is reached. Once again, therefore, we
have demonstrated that the fixed point is 6 and that it is stable. Even more, no
matter what value of x(0) we take, the system will converge on the equilibrium.
The equilibrium is unique and globally stable. The characteristic to take note
of here is that the line that passes through the equilibrium in figure 1.3 is neg-
atively sloped and cuts the x-axis at only one point.

Consider next the situation where » =1.5. In this case

X(t+ 1) = x(t) = Ax(t + 1) =3+ 1.5x(t) — x(£) = 3+ (1.5 = 1)x(7)
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1.7)

(1.8)

(1.9)

or
Ax(t+1)=3+0.5x(¢)
Is the equilibrium unchanged? No, it changes since

0=3+0.5x*
x'=—6

Also the line 3 +0.5x(¢) is positively sloped. At x(0)=10 Ax(¢t+1)>0 and so
x(¢) is rising. The system is moving further away (in the positive direction)
from the equilibrium value. A value of x(¢) less than — 6 will readily reveal that
Ax(t+1)<0 and so x(¢) is falling, and the system moves further away (in the
negative direction) from the equilibrium point. A linear system with a posi-
tively sloped difference equation, therefore, exhibits an unstable fixed point.
To summarise, for /inear difference equations of the first order, if the differ-
ence equation has a nonzero slope, then a unique fixed point exists where
the difference equation cuts the horizontal axis. If the difference equation is
negatively sloped, then the fixed point of the system is unique and globally
stable. If the linear difference equation is positively sloped, then the fixed point
of the system is unique and globally unstable. We have demonstrated all this
in previous sections. If =1 the slope is zero and no fixed point is defined. All
we have done here is to show the same characteristics in a different way. It may
not at this point seem obvious why we would do this. It is worth doing only if
it gives some additional insight. It gives some, but admittedly not very much.
Why we have laboured this approach, however, is that when we turn to two
variables, it is much more revealing. We shall see this in later chapters.

1.7 Attractors and repellors

We noted that in our example if —1<<h<1 then the system is stable and the
sequence of points converges on the fixed point. It converges either directly if
b is positive or in smaller and smaller oscillations if b is negative. If a trajec-
tory (a sequence of points) approaches the fixed point as time increases, then
the fixed point is said to be an attractor. On the other hand, if the sequence of
points moves away from the fixed point, then the fixed point is said to be a
repellor.

We can illustrate these concepts by means of the phase line. In constructing
the phase line we make use of the difference equation representation of our
recursive model. Our model is

x(t+1)=3+3x(t) x(0)=10
and the difference equation version of it is
Ax(r+1)=3—3x(r) x(0)=10

This is shown in the upper part of figure 1.4. The fixed point, denoted x*, is
where the line 3 —%x(t) cuts the horizontal axis, which is at the value 6. The
phase line simply denotes the variable x(z), and on this line is marked any fixed
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Phase line

———————— (1)
X=6

points (here we have only one), and arrows indicating the path of x(f) over
time. To the left of x*, Ax(¢) is positive, and so x(7) is rising over time. The
arrows are therefore shown pointing to the right. Similarly, when the initial
point is to the right of x*, Ax(¢) is negative and so x(z) is falling over time. The
arrows are therefore shown pointing to the left. The phase line thus illustrates
that the fixed point is attracting the system from any position on either side.
We have already established that this is the only fixed point and that it is glob-
ally stable. Hence, for any initial value not equal to the equilibrium, the system
will be attracted to the fixed point.
Consider next the recursive model

x(+1)=3+1.5x(r) x(0)=10
with the difference equation version
Ax(r+1)=3+3x(r) x(0)=10

The equilibrium point is x*=—6, and the relationship 3 +%x(t) is positively
sloped. The situation is shown in figure 1.5. Once again we place the phase line
in the diagram below. For any initial point to the right of — 6, then Ax(z+1) is
positive, and so x(z) is rising over time. The arrows are therefore shown point-
ing to the right and the system is moving away from the fixed point. Similarly,
when the initial point is to the left of x*, Ax() is negative and so x(¢) is falling
over time. The arrows are therefore shown pointing to the left and once again
the system is moving away from the fixed point. The phase line thus illustrates
that the fixed point is repelling the system for any initial value not equal to the
equilibrium value.

Figure 1.4

(1.10)

(1.11)
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Figure 1.5

(1.12)

AX( t+ 1) Ax(t+1)=3+(1/2x ¢t)

-10 x:ji ””””””” -0.5 ° X1
i -2
~ ~ @ - R Phase Iinex(t)
X=-6

Fixed points that are attracting indicate stability while fixed points that
repel indicate instability. But a fixed point can be neither of these, even in
simple linear models. We noted this above when b was equal to minus unity.
The system oscillated between two values: one above the equilibrium and one
below the equilibrium. The system neither moved towards the fixed point nor
away from it. In this case we observe a periodic cycle, and in this example the
period is 2.!

1.8 Nonlinear dynamical systems

Although a considerable amount of analysis has taken place concerning linear
models, it must always be kept in mind that in general the world is nonlinear,
and it is necessary to model the topic of interest with nonlinear equations.
Nonlinear models lead to far more diverse behaviour. They can lead to more
than one equilibrium point, they can lead to a system exhibiting both stabil-
ity or instability in different neighbourhoods and they can lead to cyclical
behaviour of orders greater than two.

Our intention in this section is to present some introductory remarks about
nonlinear systems and to introduce some new concepts. A fuller treatment will
occur in later sections of this book. Although nonlinear systems are more
complex and lead to more diverse behaviour, they can still be investigated in a
fairly easy fashion with the aid of a spreadsheet.

Consider the following nonlinear recursive model

x(t+ D) =c+axX(t) x(0)=x,
As earlier, the equilibrium of the system is found by setting x(z + 1) = x(¢) = x*,
then

I Period cycles are explained more fully in chapter 10.
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x*=c+ax™
ax?—x"+c¢=0

with solutions

1+ \/1—4acan
2a

I-V1—-4
dXZZTaC (1.13)

X =

We immediately see from (1.13) that there are two fixed points to this system.
Second, the fixed points are real valued only if 1 —4ac=0. But if there are two
fixed points to the system, then any consideration of stability or instability
cannot be global; it must be in relation to a particular fixed point. When there
is more than one fixed point we refer to local stability and local instability. The
word ‘local’ indicates that we are considering stability only in a (small) neigh-
bourhood of the fixed point.
Consider the following nonlinear recursive system

x(t+1)=2-3x%1) x(0)=x, (1.14)

which leads to equilibrium points x7=—1+V5=1.23607 and x;=—1-V/5
=—3.23607 (see box 1).

Box 1 Solving quadratic equations with a spreadsheet

We shall be solving quadratic equations frequently in this book and so
it will be useful to set the solutions up on a spreadsheet. Let any qua-
dratic equation be written in the form

ax?+bx+c=0

then we know that the solutions are given by

_—b+ Vb —d4ac  —b— Vb —dac

X, = X
! 2a 2 2a

Now set up a spreadsheet with the parameters a, b and ¢, as shown
below. Let their values be placed in cells F3, F4 and F5. (To the left we
insert the formulas as a reminder.) Then in cells F7 and F8 place the
results, i.e.

F7 = (— b+Vb*— 4ac)/2a

= (— $F$4+ SORT(SF$4"2 — 4*$ F$3*$F$5))/(2*$ F$3)
F8 =(—b—Vb—4ac)l2a

= (— $F$4 — SORT(SF$4"2 — 4*$ F$3*$F$5))/(2*$ F$3)

Save this spreadsheet. It can now be used to solve any quadratic of the
form ax2+bx+¢=0
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Py B C D E F G

1 | Quadratic
2
3 ax?+bx+c=0 a= 1
4 - b= 2
5 —b+b* —dac o= 3

x:—
& 2a
T ¥l = 3
8 _ —bb —dac =
q ! 2a
10 —b—~j¥’ —dac
11 M= —————
12 2a
13

The cobweb representation of this nonlinear system is shown in figure 1.6,
where we have the curve 2 — %xz(t) and the 45°-line denoting x(z + 1) = x(¢).

In order to investigate what is happening in the neighbourhood of the fixed
points let us set this problem up on a spreadsheet in just the same manner as
our linear example, as shown in figure 1.7. Once again we set this up in general
terms, placing the parameters ¢ and ¢ above the data we are deriving. Also
included are the formulas for the two fixed points of the system. These are
entered in cells E2 and E3 with the instructions

(1+ SORT(1 — 4*$CS$2*$C$3))/(2*$C$3)
(1— SQRT(1 — 4*$CS$2*$C$3))/(2*$C$3)

We next place the initial value in cell B6, which is here equal to 1.25.
In considering what to place in cell B7, consider the algebraic representa-
tion and the spreadsheet representation of the problem

=2—35x%(0)
= $C$2+ $C$3*B6"2

Notice that cell C3 includes the minus sign and that we specify powers in
spreadsheets by using the ‘caret’ symbol. Although the system we are investi-
gating is more complex, there is fundamentally no difference in the way we set
it up on the spreadsheet. We can now copy cell B7 to the clipboard and then
copy down for as many periods as we wish. To verify we have done all this cor-
rectly, copy one of the equilibrium values and place it in cell B6 for the initial
value. If all is OK, then all values should be 1.23607 (or approximately so
depending on the decimal places you have specified for your results). Having
performed this test satisfactorily, replace x(0) by 1.25 once again and then
experimentation can begin.

1.8.1 A change in the initial value

Let us consider first the lower equilibrium point, x; =—3.23607 and an initial
value of x(0) =— 3.5. Given this initial value, the system declines very rapidly,
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1 15 0.891201

moving further in the negative direction. What about a value slightly larger
than — 3.2? Consider the value x(0) =— 3.1. The system certainly moves away
from the fixed point, but then begins to oscillate between the values 0 and 2.
For the moment we shall not concern ourselves with the oscillatory behaviour,
and we shall take up this point later. All we are establishing here is that for
initial values a little larger than —3.23607 the system moves away from it,
which it certainly does. Hence, the fixed point x; =—3.23607 is locally unsta-
ble.

What about the fixed point x5=1.23607? Consider first a value 0.9. Very
soon the system settles into an oscillatory behaviour, oscillating once again
between 0 and 2. Consider an initial point above x5=1.23607, say 1.5. The
system once again converges on the oscillation between 0 and 2. What if we
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Figure 1.8

(1.15)

Ax(t+1)

AX(t+1)=2- (1/2)¢ ¢ )Xt

§ ‘© Phaselipe R R ©‘ ‘X(t)
X, X,

choose values even closer to the fixed point? Consider values 1.2 and 1.25,
respectively. With initial value 1.2 the system once again settles down to the
cycle 0 and 2 by about period 25. With initial point 1.25 the system settles
down to the same cycle by about period 30. The fixed point x5 =1.23607 is
neither an attractor nor a repellor.

In order to see what is taking place let us consider the difference equation
version of the model. This is

Ax(1+1)=2—3x20)— x(1) x(0)=x,
In equilibrium Ax(z+1)=0 and so

2—%x*2—x*=0
or x2+4+2x*—4=0

with solutions
xi=—1+V5 x;=—-1-V5

The same equilibrium points have once again been established. The phase
diagram representation of the problem is drawn in figure 1.8. The curve rep-
resents the equation 2 — %xz(t) — x(t). Here we are treating the curve as contin-
uous. This is important. To the left of x;=—3.23607 Ax(z+ 1)<<0, which
indicates that x(¢) is falling, so the system is moving even further in the nega-
tive direction. Slightly to the right of x5 =—13.23607 then Ax(¢z + 1)>0 and so
x(?) is rising, i.e. moving away from the fixed point. From this perspective the
fixed point x5 =—3.23607 is locally unstable and is a repellor.

Now turn to the larger of the fixed points, x; =1.23607. Slightly to the left
of this fixed point, in its neighbourhood, Ax(z+1)>0 and so x(?) is rising.
Slightly to the right of the fixed point, Ax(z+ 1) <0 and so x() is falling. In
terms of this continuous representation it appears that the fixed point
x7=1.23607 is locally stable and is an attractor. But this seems in contradic-
tion to our spreadsheet investigation — at least for the higher fixed point! Why
is this?
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What has been illustrated here is that the properties of continuous models
are not necessarily the same for their discrete counterpart. In fact, for many
discrete nonlinear models oscillatory behaviour arises. We shall see why in
later chapters. For the present all we wish to do is point out that if you are
interested in continuous models, then the difference representation of the
model with its accompanying phase line is sufficient to establish fixed points
and their local stability or instability. If, however, the model is in discrete time,
then it should be investigated on a spreadsheet to establish whether some of
the fixed points exhibit oscillations.

Let us take one further example to illustrate these points. Consider the non-
linear recursive model

x(+1)=x)—x2()+1 x(0)=x,
The difference form of the model is

Ax(t+ 1) =x31)—x2()—x()+1 x(0)=x,
In equilibrium Ax(¢+ 1) =0 and so we have

XB=x2-=x"+1=0
or (x*— 121 +x%)=0

Since the difference equation is to the power three, then there are three solu-
tions to this equation. These are

The reason why two fixed points are the same is clearly shown in figure 1.9,
which plots the equation x3(¢) — x2(¢) — x(¢) + 1 and shows the phase line below.
Consider first the continuous form of the model as shown in figure 1.9. To
the left of x*=—1 Ax(¢+1)<<0 and so x(¢) is falling. To the right of x*=—
Ax(t+1)>0 and so x(¢) is rising. The fixed point x*=—1 is locally unstable
and is a repellor. Now consider the fixed point x* =1. To the left of this point
Ax(t+ 1)>0 and so x(¢) is rising. To the right of x* =1 Ax(z+ 1) >0 and so x(¢)

Figure 1.9

(1.16)

(1.17)
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(1.18)

(1.19)

is still rising. The unusual nature of the fixed point x* =1 is shown by the phase
line with its arrows. The arrows are moving towards the fixed point x*=1 and
then away from it to the right. It is as if the system is being ‘shunted along’.
For this reason, the fixed point x* =1 is referred to as a shunt.

Does the discrete form of the model reveal these properties? In setting up
the model on a spreadsheet simply enter the initial value for the variable x, and
then in the cell immediately below the initial value, type in the formula —
moving the cursor to the cell above when placing in the variable x. Then copy
this cell to the clipboard and paste down for as many periods as you wish.
Doing this reveals the following. A value to the left of —1, say —1.2, leads the
system ever more in the negative direction. A value just above —1, say —0.9,
leads the system towards the upper fixed point x*=1. Taking a value just to
the left of the upper fixed point, say 0.5, leads the system to the fixed point
x*=1. Taking a value just above this fixed point, say 1.1, soon leads the system
into ever-higher values. Once again we have verified the same properties for
this specific model. In particular, we have illustrated that the lower fixed point
is a repellor, and is locally unstable, while the upper fixed point (strictly two)
is a shunt. In this particular example, therefore, there is no disparity in the con-
clusions drawn between the continuous form of the model and the discrete
form.

1.9 Continuous models

In section 1.8 we talked about continuous models but used a discrete represen-
tation of them. We need to be more precise about continuous models and how
to represent them. This is the purpose of this section. In section 1.10 we shall
consider a spreadsheet representation of continuous models using Euler’s
approximation. This will be found especially useful when we consider systems
of equations in chapter 4 and later.

If a variable x varies continuously with time, ¢, then x() is a continuous var-
iable. If we know, say from theory, that the change in x(¢) over time, denoted
dx(t)ldt, is

ax(t)

=)

then we have a first-order differential equation. If 7 does not enter explicitly as
a separate variable, then the differential equation is said to be an autonomous
differential equation.2

By way of example, suppose

)

o 4—2x(1)

2 This is the mathematicians’ use of the word ‘autonomous’. They mean independent of time.
When an economist refers to a variable being autonomous they mean being independent of
income.





