Publisher description for Classical groups, derangements, and primes / Timothy C. Burness, University of Bristol, Michael Giudici, University of Western Australia, Perth.

Bibliographic record and links to related information available from the Library of Congress catalog

Information from electronic data provided by the publisher. May be incomplete or contain other coding.

A classical theorem of Jordan states that every finite transitive permutation group contains a derangement. This existence result has interesting and unexpected applications in many areas of mathematics, including graph theory, number theory and topology. Various generalisations have been studied in more recent years, with a particular focus on the existence of derangements with special properties. Written for academic researchers and postgraduate students working in related areas of algebra, this introduction to the finite classical groups features a comprehensive account of the conjugacy and geometry of elements of prime order. The development is tailored towards the study of derangements in finite primitive classical groups; the basic problem is to determine when such a group G contains a derangement of prime order r, for each prime divisor r of the degree of G. This involves a detailed analysis of the conjugacy classes and subgroup structure of the finite classical groups.

Library of Congress subject headings for this publication:
Logic, Symbolic and mathematical.
Group theory.
Numbers, Prime.