Table of contents for Longitudinal data analysis / Donald Hedeker, Robert D. Gibbons.


Bibliographic record and links to related information available from the Library of Congress catalog


Information from electronic data provided by the publisher. May be incomplete or contain other coding.


Counter
Preface.

Acknowledgments.

Acronyms.

1. Introduction.
1.1 Advantages of Longitudinal Studies.
1.2 Challenges of Longitudinal Data Analysis.
1.3 Some General Notation.
1.4 Data Layout.
1.5 Analysis Considerations.
1.6 General Approaches.
1.7 The Simplest Longitudinal Analysis.
1.8 Summary.
2. ANOVA Approaches to Longitudinal Data.
2.1Single-Sample Repeated Measures ANOVA.
2.2 Multiple-Sample Repeated Measures ANOVA.
2.3 Illustration.
2.4 Summary.
3. MANOVA Approaches to Longitudinal Data.
3.1 Data Layout for ANOVA versus MANOVA.
3.2 MANOVA for Repeated Measurements.
3.3 MANOVA of Repeated Measures-s Sample Case.
3.4 Illustration.
3.5 Summary.
4. Mixed-Effects Regression Models for Continuous Outcomes.
4.1 Introduction.
4.2 A Simple Linear Regression Model.
4.3 Random Intercept MRM.
4.4 Random Intercept and Trend MRM.__
4.5 Matrix Formulation.
4.6 Estimation .
4.7 Summary.
5. Mixed-Effects Polynomial Regression Models.
5.1 Introduction.
5.2 Curvilinear Trend Model.
5.3 Orthogonal Polynomials.
5.4 Summary.
6. Covariance Pattern Models.
6.1 Introduction.
6.2 Covariance Pattern Models.
6.3 Model Selection.
6.4 Example.
6.5 Summary.
7. Mixed Regression Models with Autocorrelated Errors.
7.1 Introduction.
7.2 MRMs with AC Errors.
7.3 Model Selection.
7.4 Example.
7.5 Summary.
8. Generalized Estimating Equations (GEE) Models.
8.1 Introduction.
8.2 Generalized Linear Models (GLMs).
8.3 Generalized Estimating Equations (GEE) Models.
8.4 GEE Estimation.
8.5 Example.
8.6 Summary.
9. Mixed-Effects Regression Models for Binary Outcomes.
9.1 Introduction.
9.2 Logistic Regression Model.
9.3 Probit Regression Models.
9.4 Threshold Concept.
9.5 Mixed-Effects Logistic Regression Model.
9.6 Estimation.
9.7 Illustration.
9.8 Summary.
10. Mixed-Effects Regression Models for Ordinal Outcomes.
10.1 Introduction.
10.2 Mixed-Effects Proportional Odds Model.
10.3 Psychiatric Example.
10.4 Health Services Research Example.
10.5 Summary.
11. Mixed-Effects Regression Models for Nominal Data.
11.1 Mixed-Effects Multinomial Regression Model.
11.2 Health Services Research Example.
1 1.3 Competing Risk Survival Models.
11.4 Summary.
12. Mixed-effects Regression Models for Counts.
12.1 Poisson Regression Model.
12.2 Modified Poisson Models.
12.3 The ZIP Model.
12.4 Mixed-Effects Models for Counts.
12.5 Illustration.
12.6 Summary.
13. Mixed-Effects Regression Models for Three-Level Data.
13.1 Three-Level Mixed-Effects Linear Regression Model.
13.1.1 Illustration.
13.2 Three-Level Mixed-Effects Nonlinear Regression Models.
13.3 Summary.
14. Missing Data in Longitudinal Studies.
14.1 Introduction.
14.2 Missing Data Mechanisms.
14.3 Models and Missing Data Mechanisms.
14.4 Testing MCAR.
14.5 Models for Nonignorable Missingness.
14.6 Summary.
Bibliography.
Topic Index.


Library of Congress subject headings for this publication:
Longitudinal method.
Medicine -- Research -- Statistical methods.
Medical sciences -- Research -- Statistical methods.
Social sciences -- Research -- Statistical methods.