Table of contents for The science and engineering of microelectronic fabrication / Stephen A. Campbell.


Bibliographic record and links to related information available from the Library of Congress catalog


Information from electronic data provided by the publisher. May be incomplete or contain other coding.


Counter
Part I: OVERVIEW AND MATERIALS
Chapter 1 An Introduction to Microelectronic Fabrication
1.1. Microelectronic Technologies: A Simple Example
1.2. Unit Processes and Technologies
1.3. A Roadmap for the Course
1.4. Summary
Chapter 2 Semiconductor Substrates
2.1. Phase Diagrams and Solid Solubility
2.2. Crystallography and Crystal Structure
2.3. Crystal Defects
2.4. Czochralski Growth
2.5. Bridgman Growth of GaAs
2.6. Float Zone Growth
2.7. Water Preparation and Specifications
2.8. Summary and Future Trends
Problems
References
PART II: UNIT PROCESS I: HOT PROCESSING AND ION IMPLANTATION
Chapter 3 Diffusion
3.1. Fick's Diffusion Equation in One Dimension
3.2. Atomistic Models of Diffusion
3.3. Analytic Solutions of Fick's Law
3.4. Corrections to Simple Theory
3.5. Diffusion Coefficients for Common Dopants
3.6. Analysis of Diffused Profiles
3.7. Diffusion in SiO2
3.8. Diffusion Systems
3.9. SUPREM Simulations of Diffusion Profiles
3.10. Summary
Problems
References
Chapter 4 Thermal Oxidation
4.1. The Deal-Grove Model of Oxidation
4.2. The Linear and Parabolic Rate Coeffients
4.3. The Initial Oxidation Regime
4.4. The Structure of SiO2
4.5. Oxide Characterization
4.6. The Effects of Dopants During Oxidation and Polysilicon Oxidation
4.7. Oxidation-Induced Stacking Faults
4.8. Alternative Gate Insulators
4.9. Oxidation Systems
4.10. SUPREM Oxidations
4.11. Summary
Problems
References
Chapter 5 Ion Implantation
5.1. Idealized Ion Implantation Systems
5.2. Coulomb Scattering
5.3. Vertical Projected Range
5.4. Channeling and Lateral Projected Range
5.5. Implantation Damage
5.6. Shallow Junction Formation
5.7. Buried Dielectrics
5.8. Ion Implantation Systems: Problems and Concerns
5.9. Implanted Profiles Using SUPREM
5.10. Summary
Problems
References
Chapter 6 Rapid Thermal Processing
6.1. Gray Body Radiation, Heat Exchange, and Optical Absorption
6.2. High-Intensity Optical Sources and Chamber Design
6.3. Temperature Measurement
6.4. Thermoplastic Stress
6.5. Rapid Thermal Activation of Impurities
6.6. Rapid Thermal Processing of Dielectrics
6.7. Silicidation and Contact Formation
6.8. Alternative Rapid Thermal Processing Systems
6.9. Summary
Problems
References
PART III: UNIT PROCESSES 2: PATTERN TRANSFER
Chapter 7 Optical Lithography
7.1. Lithography Overview
7.2. Diffraction
7.3. The Modulation Transfer Function and Optical Exposures
7.4. Source Systems and Spatial Coherence
7.5. Contact/Proximity Printers
7.6. Projection Printers
7.7. Advanced Mask Concepts
7.8. Surface Reflections and Standing Waves
7.9. Alignment
7.10. Summary
Problems
References
Chapter 8 Photoresists
8.1. Photoresist Types
8.2. Organic Materials and Polymers
8.3. Typical Reactions of DQN Positive Photoresist
8.4. Contrast Curves
8.5. The Critical Modulation Transfer Function
8.6. Applying and Developing Photoresist
8.7. Second-Order Exposure Effects
8.8. Advanced Photoresists and Photoresist Processes
8.9. Summary
Problems
References
Chapter 9 Nonoptical Lithographic Techniques
9.1. Interactions of High-Energy Beams with Matter
9.2. Direct Write Electron Beam Lithography Systems
9.3. Direct Write Electron Beam Lithography Summary and Outlook
9.4. X-Ray Sources
9.5. Proximity X-Ray Exposure Systems
9.6. Membrane Masks
9.7. Projection X-Ray Lithography
9.8. Projection Electron-Beam Lithography (SCALPEL)
9.9. E-Beam and X-Ray Resists
9.10. Radiation Damage in MOS Devices
9.11. Summary
Problems
References
Chapter 10 Vacuum Science and Plasmas
10.1. The Kinetic Theory of Gasses
10.2. Gas Flow and Conductance
10.3. Pressure Ranges and Vacuum Pumps
10.4. Vacuum Seals and Pressure Measurement
10.5. The DC Glow Discharge
10.6. RF Discharges
10.7. High-Density Plasmas
10.8. Summary
Problems
References
Chapter 11 Etching
11.1. Wet Etching
11.2. Chemical Mechanical Polishing
11.3. Basic Regimes of Plasma Etching
11.4. High-Pressure Plasma Etching
11.5. Ion Milling
11.6. Reactive Ion Etching
11.7. Damage in Reative Ion Etching
11.8. High-Density Plasma (HDP) Etching
11.9. Liftoff
11.10. Summary
Problems
References
PART IV: UNIT PROCESSES 3: THIN FILMS
Chapter 12 Physical Deposition: Evaporation and Sputtering
12.1. Phase Diagrams: Sublimation and Evaporation
12.2. Deposition Rates
12.3. Step Coverage
12.4. Evaporator Systems: Crucible Heating Techniques
12.5. Multicomponent Films
12.6. An Introduction to Sputtering
12.7. Physics of Sputtering
12.8. Deposition Rate: Sputter Yield
12.9. High Density Plasma Sputtering
12.10. Morphology and Step Coverage
12.11. Sputtering Methods
12.12. Sputtering of Specific Materials
12.13. Stress in Deposited Layers
12.14. Summary
Problems
References
Chapter 13 Chemcial Vapor Deposition
13.1. A Simple CVD System for the Deposition of Silicon
13.2. Chemical Equilibrium and the Law of Mass Action
13.3. Gas Flow and Boundary Layers
13.4. Evaluation of the Simple CVD System
13.5. Atmospheric CVD of Dielectrics
13.6. Low Pressure CVD of Dielectrics and Semiconductors in Hot Wall Systems
13.7. Plasma-Enhanced CVD of Dielectrics
13.8. Metal CVD
13.9. Summary
Problems
References
Chapter 14 Epitaxial Growth
14.1. Wafer Cleaning and Native Oxide Removal
14.2. The Thermodynamics of Vapor-Phase Growth
14.3. Surface Reactions
14.4. Dopant Incorporation
14.5. Defects in Epitaxial Growth
14.6. Selective Growth
14.7. Halide Transport GaAs Vapor-Phase Epitaxy
14.8. Incommensurate and Strained Layer Heteroepitaxy
14.9. Metal Organic Chemical Vapor Deposition (MOCVD)
14.10. Advanced Silicon Vapor-Phase Epitaxial Growth Techniques
14.11. Molecular Beam Epitaxy Technology
14.12. BCF Theory
14.13. Gas Source MBE and Chemical Beam Epitaxy
14.14. Summary
Problems
References
PART V: PROCESS INTEGRATION
Chapter 15 Device Isolation, Contacts, and Metallization
15.1. Junction and Oxide Isolation
15.2. LOCOS Methods
15.3. Trench Isolation
15.4. Silicon on Insulator Isolation Techniques
15.5. Semi-insulating Substrates
15.6. Schottky Contacts
15.7. Implanted Ohmic Contacts
15.8. Alloyed Contacts
15.9. Multilevel Metallization
15.10. Planarization and Advanced Interconnect
15.11. Summary
Problems
References
Chapter 16 CMOS Techniques
16.1. Basic Long-Channel Device Behavior
16.2. Early MOS Technologies
16.3. The Basic 3-mm Technology
16.4. Device Scaling
16.5. Hot Carrier Effects and Drain Engineering
16.6. Processing for Robust Oxides
16.7. Latchup
16.8. Shallow Source/Drains and Tailored Channel Doping
16.9. Summary
Problems
References
Chapter 17 GaAs Technologies
17.1. Basic MESFET Operation
17.2. Basic MESFET Technology
17.3. Digital Technologies
17.4. MMIC Technologies
17.5. MODFETs
17.6. Optoelectronic Devices
17.7. Summary
Problems
References
Chapter 18 Silicon Bipolar Technologies
18.1. Review of Bipolar Devices: Ideal and Quasiideal Behavior
18.2. Second-Order Effects
18.3. Performance of BJTs
18.4. Early Bipolar Processes
18.5. Advaned Bipolar Processes
18.6. Hot Electron Effects in Bipolar Transistors
18.7. BiCMOS
18.8. Analog Bipolar Technologies
18.9. Summary
Problems
References
Chapter 19 MEMS
19.1. Fundamentals of Mechanics
19.2. Stress in Thin Films
19.3. Mechanical to Electrical Transduction
19.4. Mechanics of Common MEMS Devices
19.5. Bulk Micromachining Etching Techniques
19.6. Bulk Micromachining Process Flow
19.7. Surface Micromachining Basics
19.8. Surface Micromachining Process Flow
19.9. MEMS Actuators
19.10. High-Aspect Ratio Microsystems Technology (HARMST)
19.11. Summary
Problems
References
Chapter 20 Integrated Circuit Manufacturing
20.1. Yield Prediction and Yield Tracking
20.2. Particle Control
20.3. Statistical Process Control
20.4. Full Factorial Experiments and ANOVA
20.5. Design of Experiments
20.6. Computer Integrated Manufacturing
20.7. Summary
Problems
References
Appendices
I. Acronyms and Common Symbols
II. Properties of Selected Semiconductor Materials
III. Physical Constants
IV. Conversion Factors
V. Some Properties of the Error Function
VI. F Values
VII. SUPREM Commands
Index



Library of Congress subject headings for this publication:
Semiconductors -- Design and construction.