Publisher description for Supercritical fluid cleaning : fundamentals, technology, and applications / edited by John McHardy and Samuel P. Sawan.

Bibliographic record and links to related information available from the Library of Congress catalog

Information from electronic data provided by the publisher. May be incomplete or contain other coding.


Although super-critial fluid (SCF) technology is now widely used in extraction and purification processes (in the petrochemical, food and pharmaceuticals industries), this book is the first to address the new application of cleaning. The objective is to provide a roadmap for readers who want to know whether SCF technology can meet their own processing and cleaning needs. It is particularly helpful to those striving to balance the requirements for a clean product and a clean environment. The interdisciplinary subject matter will appeal to scientists and engineers in all specialties ranging from materials and polymer sciences to chemistry and physics. It is also useful to those developing new processes for other applications, and references given at the end of each chapter provide links to the wider body of SCF literature.

The book is organized with topics progressing from the fundamental nature of the supercritical state, through process conditions and materials interactions, to economic considerations. Practical examples are included to show how the technology has been successfully applied. The first four chapters consider principles governing SCF processing, detailing issues such as solubility, design for cleanability, and the dynamics of particle removal. The next three chapters discuss surfactants and micro-emulsions, SCF interaction with polymers, and the use of supercritical carbon dioxide (CO2) as a cleaning solvent. The closing chapters focus on more practical considerations such as scale-up, equipment costs, and financial analysis.

Many contributors to this book belong to the “Joint Association for the Advancement of SCF Technology” (JAAST). A primary motivation for the formation of JAAST was the growing worldwide need to replace ozone-depleting compounds (ODCs) and smog-forming volatile organic compounds (VOCs) in manufacturing processes. Although aqueous cleaning has been adopted successfully for many applications, water is not a panacea and SCF technology has emerged as a leading alternative.

Library of Congress subject headings for this publication: Supercritical fluids, Cleaning